Danish (Q)SAR Database, introduction and novelty generated in the EU LIFE Concert REACH project

Eva Bay Wedebye and Nikolai Georgiev Nikolov

Workshop 27 October 2021

DTU Food National Food Institute

Outline

- Danish (Q)SAR Database what is it and examples of project we used it for
- Danish (Q)SAR Models, briefly
- DTU role in the EU LIFE Concert REACH project

Ministry of Environment of Denmark Environmental Protection Agency

Danish (Q)SAR Database

https://qsar.food.dtu.dk/

- Developed and maintained by our DTU Food QSAR team
- Pre-generated predictions for >650,000 mono-constituent organic substances
- >200 QSAR DTU/commercial/free models used (phys.chem / HH / ENV)
- Documentation of models in harmonized format (QMRF)
- Free, easy-to-use, fast and advanced searches

- Integrated with the free OECD QSAR Toolbox
- >40 of the models in free DTU site: **Danish (Q)SAR Models**
- Both sites are **continuously being updated with new models**

Statistics since release November 2015 >10k unique IPs made >200k 'real' searches

Why a predictions database

- Quick look-up of already generated predictions at 'top level' from many QSAR models
- **Profiling of single substances**: Integrating predictions to give a bigger picture of coherence as a step 1 in weight-of-evidence assessment
- Screening across all contained predictions/structures: Advanced search combinations for screening purposes
- **Building read-across cases**: Find structural analogues with the similarity function and use predictions and training set data and/or find Tox21, PubChem etc. analogs with exp. data to contribute to read-across justification

Structure #	CAS #	SMILES	Log(Kow)	MOLWEIGHT	N_Double	DK_Daphnia_LC50_48h_mg_L
1.	50-06-6	C1(=0)C(c2ccccc2)(CC)C(=0)NC(=0)N1	1.3301	232.2258	3.0000	
2.	50-28-2	c12c(C3C(C4C(C)(C(0)CC4)CC3)CC1)ccc(0)c2	3.9429	272.3676	0.0000	
3.	50-29-3	C(Cl)(Cl)(Cl)C(c1ccc(Cl)cc1)c1ccc(Cl)cc1	6.7945	354.4761	0.0000	0.0030
4.	50-32-8	c12c3c4c(c5c(cc4ccc3ccc1)cccc5)cc2	6.1090	252.2948	0.0000	
5.	50-48-6	c12C(={c}CCCN(C)C)c3c(cccc3)CCc1cccc2	4.9487	277.3887	1.0000	
6.	51-03-6	c12c(cc(COCCOCCOCCC)c(CCC)c1)0CO2	4.2907	338.4220	0.0000	3.0000
7.	51-21-8	Fc1c[nH]c(=0)[nH]c1=0				
8.	51-28-5	c1(0)c(N(=0)=0)cc(N(=0)=0)cc1	1.7259	184.1006	4.0000	4.1000
9.	52-24-4	C1CN1P(=S)(N1CC1)N1CC1	0.6068	189.2138	1.0000	
10.	52-51-7	C(Br)(CO)(CO)N(=O)=O	-0.6408	199.9904	2.0000	0.5700
11.	52-68-6	C(CI)(CI)C(0)P(=0)(0C)0C	-0.2770	257.4322	1.0000	0.0010
12.	54-11-5	c1(C2CCCN2C)cccnc1	0.9981	162.2246	0.0000	
13.	54-85-3	C(=0)(c1ccncc1)NN	-0.8136	137.1353	1.0000	
14.	55-38-9	c1(SC)c(C)cc(OP(=S)(OC)OC)cc1	4.0791	278.3175	1.0000	0.0052
15.	55-63-0	C(CON(=0)=0)(CON(=0)=0)ON(=0)=0	1.5126	227.0815	6.0000	32.0000
16.	56-23-5	C(CI)(CI)(CI)CI	2.4421	153.8220	0.0000	35.0000
17.	56-38-2	c1(0P(=S)(0CC)0CC)ccc(N(=0)=0)cc1	3.7309	291.2506	3.0000	0.0025
18.	56-53-1	c1(C(={c}C(c2ccc(0)cc2)CC)CC)ccc(0)cc1	5.6406	268.3360	1.0000	
19.	56-55-3	c12c(c3c(cc4c(cccc4)c3)cc1)cccc2	5.5210	228.2748	0.0000	
20.	56-75-7	c1(C(0)C(C0)NC(=0)C(CI)CI)ccc(N(=0)=0)cc1	0.9160	323.1198	3.0000	
21.	57-62-5	C(N)(=0)C1C(=0)C2(0)C(0)=C3C(=0)e4e(C(C)(0)C3C0	-0.6841	478.8607	5.0000	
22.	57-92-1	C1(0)(C=0)C(0C2C(NC)C(0)C(0)C(C0)02)C(0C2C(0)	-9.0712	581.5552	3.0000	
23.	58-08-2	Cn1cnc2c1c(=0)n(C)c(=0)n2C				

(Q)SAR software/models

Commercial and free software/models with use / publication conditions from:

Development of battery approach for many training sets

Majority vote for a substance:

requiring models from at least **two systems** to be **within AD and agree** on prediction

Pictures from https://pixabay.com/da/smiley-nørd-briller-pc-ekspert-1914523/, <a href="https://bittps:/bittps:

Danish (Q)SAR Database DTU Ames battery model

• A battery prediction of Positive or Negative inside Applicability Domain (AD), requires predictions in at least 2 of the following 3 models to agree and be inside AD:

Endpoint	N (training set)	Software	Cross validation 5 * 2-fold (%)
Bacterial reverse	4,102 * (same	CASE Ultra	Sens=83.9, Spec=89.1, BA=86.5
(Ames test in S.	training set modelled in 3	Leadscope	Sens=84.3, Spec=85.7, Conc=85.0
vitro)	software systems)	SciQSAR	Sens=79.3, Spec=79.1, Conc=79.2

- A quick **external validation** (not published) with Hansen et al.** substances, which were external to the DTU Ames battery model gave:
 - Sensitivity: 523/(523+120)=81.3%
 - Specificity: 441/(441+53)=89.3%
 - Balanced Accuracy (BA) = 85.3%

* Kazius et al., J. Med. Chem. 2005, 48, p. 312-320

** Hansen et al., J. Chem. Inf. Model. 2009, 49, p. 2077–2081, NB only substances included in the Danish DB were used

Validation and documentation

• QSAR Model Reporting Formats (QMRFs) for >130 models

SAREAS S, SQRA medial for this Barryle II 2. General information 1. Editing this ratiosphere in this ratiosphere information 4. Defining this ratiosphere information	
Image: Norm of the state of	e V - Manta Manta Manta Manta

Date: 25-10-2021

(Q)SAR predicted profile

Structure (as used for QSAR prediction):

1	ID				
	REACH EC Number (pre-registration, by 2013)		REACH EC Number (registration, by Dec. 2019)		
	Registry Number	63979-55-5	PubChem CID		
	EU CLP Harmonized Classification*		DK-EPA / DTU QSAR-based CLP Advisory Classification		
	REACH registration cumulated minimum annual tonnage		US TSCA (Oct. 2021)		
	Tox21 (2019)		ToxCast (Oct. 2021)		
	Molecular Formula	C16 H18 CL2 N2 O1	Molecular weight (g/mole)	325.24	
	Chemical Name	Diphenylamine, 4'-(bis(2"-chloroethy	l)amino)-4-hydroxy-		
	(Annex VI to CLP up to and including the 9th ATP, and including Nordic Council of Minister SPIN list for group entries				

Melting point, Boiling J	point and Vapour press	sure	
Melting Point (deg C)	181.68	Melting Point Experimental (deg C)	
Boiling Point (deg C)	447.03	Boiling Point Experimental (deg C)	
Vapour Pressure (atm)	EPI.Estimated_VP_atm	Vapour Pressure Experimental (atm)	EPI.Exp_VP_atm
Vapour Pressure (mm Hg)	2.29E-009	Vapour Pressure Experimental (mm Hg)	
Vapour Pressure (Pa)	3.053E-007	Vapour pressure Subcooled Liquid (Pa)	1.31E-005
EPI MPBPVP models			
Henry's Law Constant			
HLC Bond Method (atm-m3/mole)	3.8E-013	HLC Group Method (atm-m3/mole)	
HLC Via VP/WSol (atm-m3/mole)	1.113E-010	HLC Via VP/WSol (Pa-m3/mole)	1.128E-005
Henrys Law Const. Exp db (Pa-m3/mole)		Henrys Law Const. Exp db (atm-m3/mole)	
EPI HENRYWIN models			
Water Solubility			
Water solubility from Kow (mg/L)	8.805	Water solubility from Fragments (mg/L)	4.4439
Water solubility Exp (mg/L)		Water solubility Exp Ref	
EPI WATERNT model			
Hydrolysis			
Hydrolysis Ka half-life pH 7		Hydrolysis Kb half-life pH 7	
Hydrolysis Ka half-life pH 8		Hydrolysis Kb half-life pH 8	
EPI HYDROWIN model			

рка		
pKa Acid	10.4	
- Standard deviation (±)	0.8	
pKa Base	3.5	
- Standard deviation (±)	0.6	
AODI alta madal		

ACDLabs model

pKa estimate 999: no acidic moiety found. pKa estimate -999: no basic moiety found.

ai tition coenix	cients							Level I
p	H 1	4	5	6	7	8	9	
LogD	1.74	3.86	3.97	3.99	3.99	3.99	3.97	Mass A
								Half-Life
Minimum LogD in t	he pH	3.86		Maximum LogD in	the pH	3.99		Emissio
Interval 4-9				interval 4-9				EPI Lev
ACDLabs models	water new	tition coofficient	t which for ionia	able compounds w	aria a with	the old deserve	lant amounts of	
neutral and ionized	-water par I species	uuon coemcieni	, which for ioniz	able compounds va	aries with	i the pH-depend	ent amounts of	Persiste
								Persiste
								EPI Lev
Log Koa		14.319		Log Kaw		-10.809		
EPI KOAWIN mod	e/s							Level I
Koa: octanol-air pa	ntition coe	fficient. Kaw: ai	ir-water partition	coefficient.				Leveri
Log Kow		0.64						Mass A
Log Kow		3.51						Half-Life
I a m Marris From								
Log Kow Exp				Log Kow Exp Ref				Emissio
Log Kow Exp EPI WSKOW mod	e/			Log Kow Exp Ref				EPI Lev
Log Kow Exp EPI WSKOW mod LogKow: log octan	el ol-water p	artition coefficie	ent	Log Kow Exp Ref				EPI Lev
Log Kow Exp EPI WSKOW mod LogKow: log octan	el ol-water p	artition coefficie	ent	Log Kow Exp Ref				EPI Lev Persiste
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka	el ol-water p y-based	artition coefficie 0.23	ent	Log Kow Exp Ref	ased	51.2		Persiste Persiste
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow	el ol-water p y-based y-based	artition coefficie 0.23 0.892	ent	Kp (m3/ug) Koa-ba	ased	51.2 0.948		Persiste EPI Lev
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based	e/ ol-water p y-based i-based	artition coefficie 0.23 0.892 1	ent	Kp (m3/ug) Koa-ba	ased	51.2 0.948		Persiste Persiste EPI Lev
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Mackat Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo	el ol-water p y-based i-based idels	artition coefficie 0.23 0.892 1	ent	Kp (m3/ug) Koa-ba Phi Mackay-based	ased 1	51.2 0.948		Persiste Persiste EPI Lev Sewage
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo Kp: particle-gas pa	el ol-water p y-based i-based idels intition coe	artition coefficie 0.23 0.892 1	ent ction of substan	Kp (m3/ug) Koa-based Phi Mackay-based ce sorbed to atmos	ased 1 pheric pa	51.2 0.948 articulates		Persiste Persiste EPI Lev Sewage
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo Kp: particle-gas pa	el ol-water p y-based -based idels intition coe	artition coefficie 0.23 0.892 1 fficient. Phi: fra	ent ction of substan	Kp (m3/ug) Koa-ba Phi Mackay-based ce sorbed to atmos	ased I pheric pa	51.2 0.948 articulates		Persiste Persiste EPI Lev Sewage
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo Kp: particle-gas pa	el ol-water p y-based i-based idels intition coe	artition coefficie 0.23 0.892 1 fficient. Phi: fra	ent ction of substan	Kp (m3/ug) Koa-ba Phi Mackay-based	ased 1 pheric pa	51.2 0.948 articulates		Persiste Persiste EPI Lev Sewage
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo Kp: particle-gas pa	el ol-water p y-based -based idels intition coe	artition coefficie 0.23 0.892 1 fficient. Phi: frac 23040	ent ction of substan	Log Kow Exp Ref Kp (m3/ug) Koa-ba Phi Mackay-based ce sorbed to atmos	ased 1 pheric pa	51.2 0.948 articulates 4.3624		Persiste Persiste EPI Lev Sewage
Log Kow Exp EPI WSKOW mode LogKow: log octan Kp (m3/ug) Macka Phi Junge-Pankow Phi Koa-based EPI AEROWIN mo Kp: particle-gas pa Koc from MCI (L/kg Koc from Kow (L/kg	el ol-water p y-based i-based idels intition coe g)	artition coefficie 0.23 0.892 1 ifficient. Phi: frac 23040 884.4	ent ction of substan	Log Kow Exp Ref Kp (m3/ug) Koa-ba Phi Mackay-based ce sorbed to atmos Log Koc from MCI Log Koc from Kow	ased 1 pheric pa	51.2 0.948 articulates 4.3624 2.9466		Persiste Persiste EPI Lev Sewage

el III Fugacity Environmental Partitioning, emission to air, water and soil							
	Air	Water	Soil	Sediment			
ss Amount (%)	1.92E-005	7.02	80.7	12.3			
f-Life (hr)	1.24	1440	2880	13000			
issions (kg/hr)	1000	1000	1000	0			
Level III Fugacity Model							
sistence time (hr)		3250					
sistence time (days)		135.4167					
Level III Fugacity Model							
			• • •				
el III Fugacity Envir	onmental Partiti	oning, emission o	nly to water				
	Air	Water	Soil	Sediment			
s Amount (%)	2.56E-013	36.3	5.09E-007	63.7			
f-Life (hr)	1.24	1440	2880	13000			
ssions (kg/hr)	0	1000	0	0			
Level III Fugacity Model							
sistence time (hr)		1710					
sistence time (days)		71.25					
Level III Fugacity Model							
age Treatment Plant	(STP) overall ch	nemical mass bala	nce using 10,000 h	r			
	Total removal	Biodegradation	Sludge Adsorption	Volatilization			
	13.26	0.19	13.08	0			
STPWIN model							

Atmospheric oxidation (25 deg C)					Bioaccumulation				
	он	07	one		BCF (L/kg wet-wt)			95.83	
Half Life (d)	0.0516	02			Log BCF (L/kg wet-wt)			1.982	
	0.0516	0			Whole Body Primary Biotrans	formation Fish Hal	f-Life (days)	0.1804	
Half-Life (hr)	0.619				BCF Arnot-Gobas (upper trop	hic) Including Biot	ransformation (L/kg wet-w	rt) 62.25	
Overall Rate Const. (OH: E-12	207 2672				BCF Arnot-Gobas (upper trop	hic) Zero Biotransi	formation (L/kg wet-wt)	341.5	
cm3/molecule-sec and OZ: E-17 cm3/molecule-sec)	201.2012				BAF Arnot-Gobas (upper trop	hic) Including Biot	ransformation (L/kg wet-w	t) 62.25	
EPI AOPWIN models					BAF Arnot-Gobas (upper trop	hic) Zero Biotransf	formation (L/kg wet-wt)	485.2	
					EPI BCFBAF models BCF: Bioconcentration factor.	BAF: Bioaccumul	ation factor		
					,				
Biodegradation					Aquatic toxicity				
Biowin1 (linear model) Probability of Ra	apid Biodegradation	0.0467				Exp	Battery	Leadscope	SciQSAR
Biowin2 (non-linear model) Probability	of Rapid Biodegradation	0.0002			Fathead minnow 96h LC50			0.6731269	0.7366208
Biowin3 Expert Survey Ultimate Biodeg	gradation	1.8007			Domain		OUT	OUT	OUT
Biowin3 Expert Survey Ultimate Timefr	ame	months		Daphnia magna 48h EC50			501		
Biowin4 Expert Survey Primary Biodeg	radation	2.8206			(mg/L)		0.4565404	0.3870346	0.5260463
Biowin4 Exp. Survey Primary Timefram	ne	weeks			Domain		IN	IN	IN
Biowin5 (MITI linear model) Biodegrad	ation Probability	-0.1682			Pseudokirchneriella s. 72h EC50 (mg/L)			0.4397876	0.04881282
Biowin6 (MITI non-linear model) Biode	gradation Probability	0.0009			Domain		OUT	OUT	OUT
Biowin7 (Anaerobic Linear) Biodegrada	ation Probability	-1.1247			DTU-developed models				
Petroleum Hydrocarbon Biodegradatio	n Half-Life (days)								
EPI BIOWIN models							Fish 96h	Daphnid 48h	Green Algae 96h
SkinBiowin1 and Biowin2: ≥0.5: "Rapid Biowin3 and Biowin4: 5 ~ hours; 4 ~ da	l" <0.5: "Slow" ays; 3 ~ weeks; 2 ~ month	s; 1 ~ years.			LC50 (Fish) or EC50 (Daphnie Most Toxic Class (mg/L)	d and Algae) for	4.035	2.378	9.446
Biowin5 and Biowin6: ≥0.5: "Readily", Biowin7: ≥0.5: "Fast", <0.5: "Slow"	<0.5: "Not readily".				Max. Log Kow for Most Toxic	Class	7	7	7
					Most Toxic Class		Phenols	Phenols	Phenols
_		0.005		0.10010	Note				Chemical may not be soluble enough
Exp	Battery	CASE Ultra	Leadscope	SciQSAR	EPI ECOSAR models				
Not Ready Biodegradability (POS=Not Ready)	POS_IN	POS_IN	POS_IN	NEG_OUT	ECOSAR Classes: Phenols				
DTU-developed models									

Oral absorption

Lipinski's Rule-of-five score (bioavailability)	0
Absorption from gastrointestinal tract for 1 mg dose (%)	100
Absorption from gastrointestinal tract for 1000 mg dose (%)	50

Leadscope model on Lipinski's Rule-of-five. Equation from literature on GI abs.

Lipinski scores of 0 or 1: The substance may be bioavailable. Lipinski scores of 2, 3 or 4: The substance may not be bioavailable.

0.000248

0.411

Skin absorption

Dermal absorption (mg/cm2/event)

EPI DERMWIN model

Brain/blood Distribution

Log brain/blood partition coefficient

Equation from literature

Partitioning between the two tissues at equilibrium. >1: high, >0 to <1: medium, >-1 to <0, fair, <-1: low.

Metabolism

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
CYP2C9 substrates (Human clinical data)		NEG_IN	NEG_IN	NEG_IN	NEG_IN
CYP2D6 substrates (Human clinical data)		INC_OUT	POS_IN	INC_OUT	NEG_IN
DTU-developed models					

Acute toxicity in Rodents

	LD50 (mg/kg/d)	Reliability Index
Rat Oral	45.29	0.46
Rat Intraperitoneal	15.89	0.33
Mouse Oral	57.58	0.55
Mouse Intraperitoneal	84.67	0.32
Mouse Intravenous	12.12	0.27
Mouse Subcutaneous	7.33	0.46

ACDLabs models

Reliability index: <0.3 = Not reliable prediction quality; 0.3-0.5 = borderline prediction quality; 0.5-0.75 = moderate prediction quality; >0.75 = high prediction quality.

MRDD in Humans

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
MRDD in Humans ≤ 2.69 mg/kg-bw/d		POS_IN	POS_OUT	POS_IN	POS_IN

DTU-developed models

Model based on data on pharmaceuticals. Maximum recommended daily dose in pharmaceutical clinical trials employing primarily oral route of exposure and daily treatments, usually for 3-12 months.

Irritation and Sensitization

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Severe Skin Irritation in Rabbit		POS_IN	POS_IN	POS_IN	NEG_IN
Allergic Contact Dermatitis in Guinea Pig and Human*	N/A	POS_IN	POS_IN	POS_IN	POS_IN
Respiratory Sensitisation in Humans		INC_OUT	INC_OUT	POS_OUT	NEG_OUT
DTLL developed medale					

DTU-developed models

*Based on commercial training set

	VEGA	ADI
Skin Sensitization (CAESAR)	POS_Low	0.444

CAESAR skin sensitization model is version 2.1.6 contained in VEGA command line version 1.1.2 BETA 5 with calculation core version 1.2.4

Prediction: POS = Sensitizer, NEG = Non-sensitizer, SUSP.POS = Suspected sensitizer, POSS.NEG = Possible Non-sensitizer, Exp = experimental value, Good = Good reliability, Mod = Moderate reliability, Low = Low reliability.

Protein binding by OASIS, alerts in:

- parent only	Alkyl halides
- metabolites from skin metabolism simulator only	Aldehydes; Alkyl halides; alpha-Activated haloalkanes; Mustard compounds; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinones, Naphthoquinone(s)/imines
- metabolites from auto-oxidation simulator only	Alkyl halides; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinones, Naphthoquinone(s)/imines
Protein binding by OECD, alerts in:	
- parent only	Mustards
- metabolites from skin metabolism simulator only	alpha-Halocarbonyls; Mono-carbonyls; Mustards; Polarised alkene - ketones; Quinone-imine
- metabolites from auto-oxidation simulator only	Mustards; Polarised alkene - ketones; Quinone-imine
Protein binding potency Cys (DRPA 13%), alerts in:	
- parent only	Out of mechanistic domain
- metabolites from skin metabolism simulator only	DPRA above 21% (DPRA 13%) >> Non-Conjugated monoaldehydes (reactive); DPRA above 21% (DPRA 13%) >> p-Phenylenediamine derivatives

- metabolites from auto-oxidation simulator only	DPRA above 21% (DPRA 13%) >> p-Phenylenediamine derivatives				
Protein binding potency Lys (DRPA 13%), alerts in:					
- parent only	Out of mechanistic domain				
- metabolites from skin metabolism simulator only	DPRA above 21% (DPRA 13%) >> Aminophenol derivatives (reactive); DPRA less than 9% (DPRA 13%) >> Non-alpha,beta-conjugated monoaldehydes (non reactive)				
- metabolites from auto-oxidation simulator only	DPRA above 21% (DPRA 13%) >> Aminophenol derivatives (reactive)				
Keratinocyte gene expression, alerts in:					
- parent only	Very high gene expression >> Substituted para- and ortho-phenylenediamines, aminophenols and benzenediols				
- metabolites from skin metabolism simulator only	High gene expression >> Non-conjugated aldehydes and dialdehydes; Moderate gene expression >> Fragrance aldehydes; Very high gene expression >> alpha, beta-Unsaturated carbonyl compounds; Very high gene expression >> Substituted para- and ortho-phenylenediamines, aminophenols and benzenediols				
- metabolites from auto-oxidation simulator only	Very high gene expression >> alpha, beta-Unsaturated carbonyl compounds				
Protein binding potency GSH, alerts in:					
- parent only	Not possible to classify according to these rules (GSH)				
OECD QSAR Toolbox v.4.1 profilers					
Profiler predictions are supporting information to be used together with the relevant QSAR predictions					

Endocrine and Molecular Endpoints							
	Exp	Battery	CASE Ultra	Leadscope	SciQSAR		
Estrogen Receptor α Binding, Full training set (Human <i>in vitro</i>)		INC_OUT	NEG_IN	INC_OUT	POS_IN		
Estrogen Receptor α Binding, Balanced Training Set (Human <i>in vitro</i>)		POS_IN	POS_IN	POS_IN	NEG_IN		
Estrogen Receptor α Activation (Human in vitro)		POS_OUT	INC_OUT	INC_OUT	POS_IN		
Estrogen Receptor Activation, CERAPP data (<i>in vitro</i>)		N/A	N/A	NEG_IN	N/A		
Androgen Receptor Inhibition (Human in vitro)		INC_OUT	INC_OUT	NEG_IN	POS_IN		
Androgen Receptor Binding, CoMPARA data (in vitro)		N/A	N/A	POS_OUT	N/A		
Androgen Receptor Inhibition, CoMPARA data (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A		
Androgen Receptor Activation, CoMPARA data (<i>in vitro</i>)		N/A	N/A	NEG_IN	N/A		
Thyroperoxidase (TPO) inhibition QSAR1 (Rat <i>in vitro</i>)		N/A	N/A	POS_IN	N/A		

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Thyroperoxidase (TPO) inhibition QSAR2 (Rat <i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Thyroid Receptor a Binding (Human in vite	ro)				
- mg/L			52024.02	201.7734	69.71142
- μM			159955.8	620.3831	214.3384
- Positive for IC ₅₀ \leq 10 μ M					
 Positive for IC₅₀ ≤ 100 μM 					
- Domain		OUT	OUT	OUT	OUT
Thyroid Receptor β Binding (Human in viti	ro)				
- mg/L			10524.57	6.459723	628.4979
- μM			32359.38	19.86141	1932.413
 Positive for IC₅₀ ≤ 10 µM 					
 Positive for IC₅₀ ≤ 100 µM 					
- Domain		OUT	OUT	OUT	OUT
Arylhydrocarbon (AhR) Activation – Rational final model (Human <i>in vitro</i>)		N/A	N/A	NEG_IN	N/A
Arylhydrocarbon (AhR) Activation – Random final model (Human <i>in vitro</i>)		N/A	N/A	NEG_OUT	N/A
Pregnane X Receptor (PXR) Binding (Human <i>in vitro</i>)	N/A	INC_OUT	POS_OUT	POS_OUT	INC_OUT
Pregnane X Receptor (PXR) Binding (Human <i>in vitro</i>) NEW		N/A	N/A	NEG_IN	N/A
Pregnane X Receptor (PXR) Activation (Human <i>in vitro</i>)		N/A	N/A	INC_OUT	N/A
Pregnane X Receptor (PXR) Activation (Rat <i>in vitro</i>)		N/A	N/A	NEG_IN	N/A
CYP3A4 Induction (Human in vitro)		N/A	N/A	NEG_OUT	N/A
Constitutive Androstane Receptor (CAR) Activation at max. 20 μM (in vitro)		N/A	N/A	NEG_IN	N/A
Constitutive Androstane Receptor (CAR) Activation at max. 50 µM (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Constitutive Androstane Receptor (CAR) Inhibition at max. 20 µM (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Constitutive Androstane Receptor (CAR) Inhibition at max. 50 µM (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A
DTU-developed models					
Estrogen Receptor Binding, alerts in:					
- parent only		Strong binder, OH	group		
- metabolites from <i>in vivo</i> Rat metabolism simulator only		Strong binder, NH2 binder, NH2 group;	group; Strong t Weak binder, C	binder, OH grou H group	p; Moderate
- metabolites from Rat liver S9 metabolisn simulator only	ı	Strong binder, OH	group		

Other in vitro Genotoxicity Endpoints						In vivo mutagenicity (Micronucleus) alerts by IS	S, alerts in:				
	Exp	Battery	CASE Ultra	Leadscope	SciQSAR	- parent only	S or N m	nustard			
Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells*	N/A	NEG_OUT	INC_OUT	INC_OUT	NEG_IN	OECD QSAR Toolbox v.4.2 profilers					
Chromosome Aberrations in Chinese Hamster Lung (CHL) Cells		POS_OUT	POS_OUT	POS_IN	INC_OUT	Profiler predictions are supporting information to	o be used toge	ther with the re	elevant QSAR	predictions	
Mutations in Thymidine Kinase Locus in Mouse Lymphoma Cells		POS_IN	POS_IN	POS_IN	POS_IN	Carcinogenicity					
Mutations in HGPRT Locus in Chinese Hamster Ovary (CHO) Cells		POS_OUT	POS_OUT	POS_IN	NEG_OUT		E Ultra		Lead	scope	
Unscheduled DNA Synthesis (UDS) in Rat		NEG IN	NEG IN	NEG IN	NEG IN	FDA RCA Cancer Male Rat	POS_OUT		NEG	_IN	
Hepatocytes						FDA RCA Cancer Female Rat	POS_IN		POS	_IN	
Syrian Hamster Embryo (SHE) Cell Transformation		POS_OUT	POS_OUT	INC_OUT	POS_IN	FDA RCA Cancer Rat	POS_OUT		POS	_IN	
DTU-developed models						FDA RCA Cancer Male Mouse	POS_IN		POS	_IN	
*Based on commercial training set						FDA RCA Cancer Female Mouse	POS_IN		POS	_IN	
HGPRT: Hypoxanthine-guanine phosphoribosyl	transferase					FDA RCA Cancer Mouse	POS_IN		POS	IN	
						FDA RCA Cancer Rodent	POS_IN		POS	_IN	
DNA alerts for CA and MNT by OASIS, alerts in:	:					Commercial models from CASE Ultra and Lead	scope				
- parent only	No alert	found				FDA RCA: Data from US Food and Drug Admin	istration as pa	rt of Research	Cooperation A	greement	
Protein binding alerts for Chromosomal aberration	on by OASIS,	alerts in:									
- parent only	Nitrogen	Mustard									
OECD QSAR Toolbox v.4.2 profilers	ue taet					Carcinogenicity (genotox and nongenotox) alert	s by ISS, alert	s in:			
Profiler predictions are supporting information to	be used toge	ther with the re	elevant QSAR	predictions		- parent only	S or N m carcinog	nustard (Genot enicity	ox); Structural	alert for genote	oxic
						Oncologic Primary Classification, alerts in:					
In vive Constanisity Endosints						- parent only	Aromatic Function	c Amine Type (al Groups; Phe	Compounds; N enol Type Com	itrogen Mustar npounds	ds Reactive
In vivo Genotoxicity Endpoints						OECD QSAR Toolbox v.4.2 profilers					
	Exp	Battery	CASE Ultra	Leadscope	SciQSAR	Profiler predictions are supporting information to	o be used toge	ther with the re	elevant QSAR	predictions	
Sex-Linked Recessive Lethal (SLRL) Test in Drosophila m.		POS_IN	POS_IN	POS_IN	POS_IN						
Micronucleus Test in Mouse Erythrocytes		POS_IN	POS_OUT	POS_IN	POS_IN		Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Dominant Lethal Mutations in Rodents		POS_IN	POS_IN	POS_IN	POS_IN	Liver Specific Cancer in Rat or Mouse		NEG OUT	NEG IN	INC OUT	INC OUT
Sister Chromatid Exchange in Mouse Bone Marrow Cells		POS_IN	INC_OUT	POS_IN	POS_IN	DTU-developed models		.120_001	1120_11		
Comet Assay in Mouse		POS_IN	POS_IN	NEG_OUT	POS_IN						
DTU-developed models											

Abbreviations

INC: inconclusive. A definite call within the defined applicability domain could not be made.

NEG: negative

POS: positive

IN: inside applicability domain

OUT: outside applicability domain

Exp: Experimental values, from EpiSuite experimental databases or DK DTU QSAR models training sets.

N/A: Not applicable, either because training set data cannot be released for commercial or proprietary models / training sets, or because the model was not developed in a given QSAR software (i.e. a given prediction is not available as the model version does not exist).

Important notes

This is an automatically generated report from the Danish (Q)SAR Database, http://qsar.food.dtu.dk.

For predictions from CASE Ultra, Leadscope, SciQSAR as well as the Acute toxicity in rodent from ACDLabs information on the software versions can be found in the QMRFs. For the other predicted properties the software versions are:

EPI MPBPWIN v1.43 EPI HENRYWIN v3.20 EPI WSKOW v1.42 EPI WATERNT v1.01 EPI KOAWIN v1.10 EPI AEROWIN v1.00 EPI KOCWIN v2.00 EPI Level III Fugacity Model (EPI Suite v4.11) EPI STPWIN (EPI Suite v4.11) EPI AOPWIN v1.92 EPI BIOWIN v4.10 EPI BCFBAF v3.01 EPI ECOSAR v1.11 EPI DERMWIN v2.02 ACD/ ToxSuite 2.95.1 Ionization\pKa ACD/ ToxSuite 2.95.1 Ionization\ LogD ACD/ ToxSuite 2.95.1

It is recommended to run the latest version of the EPI Suite Programs in preference of the predictions given in this document when these endpoints are of importance and new versions have been released from the United States Environmental Protection Agency in comparisons. EPI Suite can be downloaded from the US EPA homepage: <u>http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm</u>

For further information on the applied systems, see the following homepages: Case Ultra: <u>http://www.multicase.com/case-ultra</u> Leadscope: <u>http://www.leadscope.com/</u> SciQSAR: <u>http://lhasa-llc.com/</u> ToxSuite: <u>http://www.acdlabs.com/</u>

Copyright notice, terms and conditions of use

Permission is granted to use information from the database as is. The database is an expert tool where the final assessment of properties is not dictated by the (Q)SAR estimates, but by the user's own scientific judgment. Aside from the fact that models are never perfect, the (Q)SAR field is under rapid development and models are regularly updated and improved. It is also impossible to provide the detailed information accompanying each individual prediction that is available to those who do not own licences to the software platforms. The structural information in the database stems from many sources and in some cases it may be wrong. The structures are also in some cases abbreviated in that possible anions and cations have been removed. This can have important toxicological significance (e.g. for Heavy Metal salts).

All access to the database should happen through the provided client-side software and without any use of automated workflow or scripting.

Reproduction of information from the database is permitted provided the source is acknowledged as follows: "Danish (Q)SAR Database, Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, http://qsar.food.dtu.dk."

The Technical University of Denmark (DTU) is not responsible for any errors or inaccuracies the database may contain and is not liable for any use that may be made of the information contained therein. DTU do not warrant, and hereby disclaim any warranties, with respect to the accuracy, adequacy or completeness of any information obtained from this database. Nor do we warrant that the site will operate in an uninterrupted or error-free manner or that the site and its components are free of viruses or other harmful components. Use of information obtained from or through this site is at your own risk. As a user of this database, you agree to indemnify and hold DTU harmless from any claims, losses or damages, including legal fees, resulting from your use of this database, and to fully cooperate in DTU's defense against any such claims.

The user requests are processed by the server hosting the database which in the process stores information. Only authorized employees have authorized access to the server and reasonable measures are in place to protect the server from unauthorized access. DTU uses the stored user request information solely for error tracking and to collect anonymized statistics (number of users, number of searches, number of report downloads etc.), and we do not release any information at the level of individual searches. However, as the online user access to the database does not happen through a secure connection and as any server/PC/network that the requests pass through may be compromised by unauthorized access, we cannot guarantee that the information submitted by users does not fall into the hands of third parties.

These terms are governed by Danish Law, with the exception of international private law and conflict of law rules, to the extent that such rules would result in the application of another country's law. Any dispute arising between the parties in connection with the use of this database, including the interpretation of the above terms, which cannot be settled amicably by negotiation between the parties, shall be settled by the Court of Lyngby, Denmark, as the court of first instance.

Imbedded film not included in this pdf..

Integration with the OECD QSAR Toolbox in 2018

- Previous Danish (Q)SAR Database incorporated
- Danish (Q)SAR Database **integrated** via on-the-fly-access

REACH Annex III 2016

Structures and predictions from the Danish (Q)SAR Database were used together with predictions from other systems for the ECHA inventory of substances suspected to meet REACH Annex III criteria

Substances registering in the tonnage band of 1–10 tonnes/year meeting either one or both of the Annex III criteria have to **provide full Annex VII information**:

- a. substances predicted (i.e. by the use of QSARs or other evidence) to likely meet criteria for CMR category 1A or 1B or Annex XIII criteria (i.e. PBT and vPvB);
- b. substances with **dispersive or diffuse use(s)** AND predicted to likely meet criteria for **any health or environmental hazard** classes or differentiations under CLP Regulation.

The REACH **registration deadline** for phase-in substances in the 1-10 tonnage band was **31 May 2018**

Preparation of an inventory of substances suspected to meet REACH Annex III criteria

Use of the Danish (Q)SAR Database (incl. previous versions), examples

• DK EPA advisory classifications screenings (2016-18, 2010, 2009, 2001)

- Grouping and category approach for brominated flame retardants for DK-EPA (2016)
- Endocrine activity screening for DK EPA screening 72,000 REACH substances (2014)
- DK EPA screening 72,000 substances identifying **potential CMR substances** of relevance under the REACH regulation (2013)
- **EU FP7 ChemScreen**, WP on QSAR pre-screen for **reproductive toxicity** screening 72,000 REACH substances (2010-2013)
- PMT screening (2017-20), PBT screening (2002), POP screening (1999)
- **EU REACH activities** REACH implementation projects (RIPs), substance evaluations, dossier evaluations and screening for SEv-candidate substances (for clarification whether SVHC nomination would be relevant), commenting of (Q)SAR-related guidances (e.g. RAAF).
- **OECD activities** development of (Q)SAR validation principles (Setubal/OECD), QSAR Toolbox, commenting of guidance documents, contributing QSAR predictions concerning mono-constituent organic SIDS chemicals to former HPV programme for >10 y from 2000 etc.

Danish (Q)SAR Models

powered by Leadscope Predictive Data Miner

Ministry of Environment and Food of Denmark

DTU

Home New query Quick start guide Model documentation	Contact	Danish (Q)SAR Database
Molecule Id (optional): Select models Select all		Predict
Environmental Estrogen receptor (ER) ADME ER alpha binding, all (human in vitro) Endocrine/molecular ER alpha binding, balanced (human in vitro) Endocrine/molecular 2 ER alpha activation (human in vitro) Genotoxicity/cancer ER Activation (in vitro, CERAPP data) Other endpoints Androgen receptor (AR) AR inhibition (human in vitro) AR binding (in vitro, COMPARA data) AR inhibition (in vitro, CoMPARA data) AR inhibition (in vitro, CoMPARA data) Thyroid-related endpoints Thyroperoxidase (TPO) inhibition QSAR1 (in vitro) Thyroperoxidase (TPO) inhibition QSAR2 (in vitro) Thyroperoxidase (TPO) inhibition QSAR2 (in vitro)	C N O F P S H H · · ·	 Currently holds 42 (Q)SAR models from the DK-DB: For real-time predictions of user- defined structures and download of details in QPRF Btw. the system has a
		to ensure same format as used for modelling (neutralizing etc.)

Novelty generated by DTU in this project so far

- Generate and include predictions from a number of VEGA models in the Danish DB
 - To choose the most relevant and best models to supplement the information in our DB we have thoroughly considered all VEGA model documentation (QMRFs and scientific publications) according to OECD validation principles and are in dialogue with IRFMN about our outstanding questions. So far we have chosen and implemented the Ames consensus mutagenicity models (including the four underlying models) and a skin sensitisation model. We are in the nearest future - depending on the outcome of the dialogue with IRFMN - going to choose and implement other models.
- Training in the Danish (Q)SAR Database
- Contributed information on our non-confidential QSAR training sets to IRFMN
- Contribute to scientific conference / meetings dissemination
- Organize this **workshop** for EU authorities
- Planning together with knoell webinars / e-meetings
- Coordinate communication and dissemination task

Thank you

Recent updates of the database and models websites

- The database and models websites are **continuously being expanded** regarding included models / information and updated regarding the user interface
- E.g. in 2020, we updated the systems with:
 - 8 additional models (1 CERAPP, 3 CoMPARA and 4 CAR)
 - Cumulated REACH registration minimum tonnages
 - EU CLP harmonized classifications
 - DK advisory classifications
 - Interface with lists of model statistics / QMRF links, reports, papers, presentations etc.
 - New advanced search functionality (min/max combinations of previous searches)
- In the EU LIFE Concert REACH project we've included VEGA predictions and more will follow
- Models under development by us in the EU H2020 projects FREIA and ATHENA as well as for skin sensitization in project for DK-EPA