

# VERA: VIRTUAL EXTENSIVE READ-ACROSS A new tool for automated read-across

### **CASE STUDY:**

using the new VERA tool, for automated read-across assessment of carcinogenicity



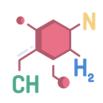


# VERA: the new concept of similarity





STRUCTURAL SIMILARITY


VEGA

**Endpoint Specific** 

SAs

TOXICOLOGICAL SIMILARITY





**GROUPING SIMILARITY** 

MGs

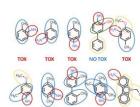
From RdKit and other manually implemented as SMARTS

Based on literature searching and implemented as SMARTS

### **General Workflow of VERA**






6 0.338
1 0.915
2 0.314
3 0.910
0 0.006
4 0.006
43 0.861 CC(C)C(=0)Netoco(N=1)=01
444 0.860 Contractable(conti)DC0
455 0.860



| SMILES             | VEGA_Sim | Experimental value | GRP_Sim |       |
|--------------------|----------|--------------------|---------|-------|
| Co1ccccc1N         | 0.675    | 1                  | 0.867   |       |
| Cotocco(N)c1       | 0.890    | 1                  | 0.786   |       |
| Octoss(N)cc1       | 0.878    | 1                  | 0.786   |       |
| 000(-02000002)0010 | 0.837    | 0                  | 0.761   | S     |
| COctoco(C)cc1N     | 0.938    | 1                  | 0.744   | in si |
| COc1ccc(N)c(C)c1   | 0.914    | 1                  | 0.744   |       |
| Cc1ccc(C)c(N)c1    | 0.884    | 1                  | 0.744   | cak   |
| c(-c2cccc2C)ccc1N  | 0.742    | 3                  | 0.744   |       |
| Getec(G)c(N)cc1G   | 0.848    | 1                  | 0.723   |       |
| 000002c2cc(N)coc21 | 0.705    | 1                  | 0.716   |       |

SA MG<sub>1</sub> OH MG<sub>2</sub>







Calculation of VEGA sim.



and filtering VEGA sim > 0.65



Searching SA in the target



and filtering by SA



Searching MGs in the target

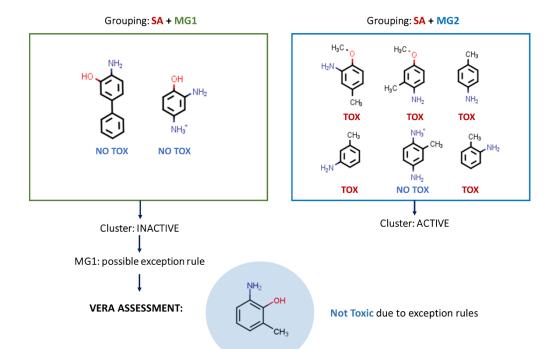


calculation of grouping similarity

Considering MG in common and not with the target

Reasoning



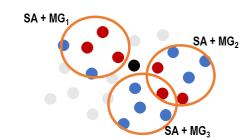

Clusters SA vs MG<sub>n</sub>

### **Endpoints**





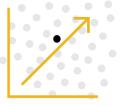
### **CARCINOGENICITY Classification**





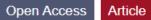

## FISH ACUTE TOXICITY Continuous








Grouping 2


If VEGA sim > 0.75

3 Local linear models



#### **Pubblication**





#### Virtual Extensive Read-Across: A New Open-Access Software for Chemical Read-Across and Its Application to the Carcinogenicity Assessment of Botanicals

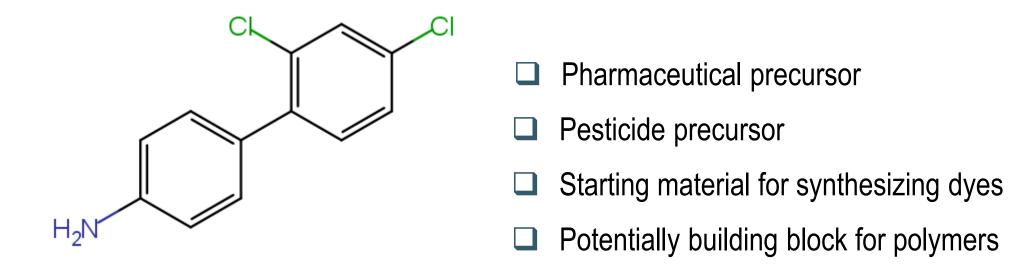
- by (2) Edoardo Luca Viganò 1 (1), (2) Erika Colombo 1 (1), (2) Giuseppa Raitano 1,
- Alberto Manganaro <sup>2</sup>, Alessio Sommovigo S
- Emilio Benfenati <sup>1,\*</sup> □
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
- <sup>2</sup> KODE Srl, 56122 Pisa, Italy
- <sup>3</sup> Methodological and Scientific Support Unit, European Food Safety Authority, 43126 Parma, Italy
- Author to whom correspondence should be addressed.

Molecules 2022, 27(19), 6605; https://doi.org/10.3390/molecules27196605

Received: 22 August 2022 / Revised: 23 September 2022 / Accepted: 25 September 2022 /

Published: 5 October 2022

### **Availability**






### **CASE STUDY**



#### **CARCINOGENICITY**



4-(2,4-dichlorophenyl)aniline