

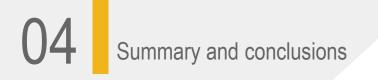
## CASE STUDY: QSAR calculation of octanolwater partition coefficient log Kow

31/05/2023, LIFE CONCERT REACH Web-Seminars - (Q)SAR Models under REACH: Practical Examples

Andrzej Szymoszek, Ph.D. knoell Germany GmbH aszymoszek@knoell.com

www.knoell.com

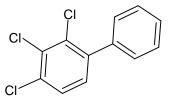



# 01 Introduction on models and current case study



Running models and analysis of results

03


Documentation of QSAR results in IUCLID for REACH dossier preparation TABLE OF CONTENTS



### Case study description

Aim: Prediction of octanol-water partition coefficient log Kow using VEGA QSAR models and documentation in IUCLID

**Target molecule:** 2,3,4-Trichlorobiphenyl



Models: VEGA – Meylan/KOWWIN, MLogP, ALogP. QSAR Model Reporting Formats (QMRFs) are available.

Input data: SMILES notation - c1ccc(cc1)c2ccc(c(c2CI)CI)CI

### Models for log Kow in the CONCERT REACH gateway

| 11                                           | 7.7. Water solubility                                                           |                                                 | ном                       | E PROJ          | ECT RES              | ULTS                | RESOURCES NEW      | S CONTA | ACT. |         | GATEWAY USE | R GUIDE                   |        |  |
|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|-----------------|----------------------|---------------------|--------------------|---------|------|---------|-------------|---------------------------|--------|--|
| - 7.8. Partition coefficient n-octanol/water |                                                                                 |                                                 |                           |                 |                      |                     |                    |         |      | GATEWAY |             |                           |        |  |
|                                              | All VEGA AND ToxRead                                                            | DANISH QSAR DA                                  | QSAR DATABASE AMBIT OCHEM |                 |                      |                     |                    |         |      |         |             |                           |        |  |
|                                              | End Point                                                                       | Model                                           | Туре                      | Dataset<br>size | Training<br>set size | Test<br>set<br>size | Platform           | Remarks |      |         |             |                           |        |  |
|                                              | P-CHEM 4.7. Partition coefficient                                               | Dataset                                         |                           | 16668           |                      |                     | AMBIT              |         |      |         |             |                           |        |  |
|                                              | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow)                        | LogP model (Meylan-<br>Kowwin)                  | continuous                | 9961            | 9961                 | 0                   | VEGA               | =       |      |         |             |                           |        |  |
|                                              | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow)                        | LogP model (MLogP)                              | continuous                | 9961            | 9961                 | 0                   | VEGA               | =       |      |         |             |                           |        |  |
|                                              | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow); OECD<br>107, 117, 123 | LogP model (ALogP)                              | continuous                | 9961            | 9961                 | 0                   | VEGA               | =       |      |         |             | ÇI                        | $\sim$ |  |
|                                              | LogD (at multiple pH'es)                                                        | LogD (EPI)                                      | continuous                |                 |                      |                     | DanishQSARDatabase | =       |      |         | CI          | $\downarrow$ $\downarrow$ | IJ     |  |
|                                              | Minimum LogD in the pH interval<br>4-9                                          | Minimum LogD in<br>the pH interval 4-9<br>(EPI) | continuous                |                 |                      |                     | DanishQSARDatabase | =       |      |         |             | $\checkmark$              |        |  |
|                                              | Partition coefficient n-<br>octanol/water                                       | Log Kow (EPI)                                   | continuous                |                 |                      |                     | DanishQSARDatabase | =       |      |         | CI-         | $\checkmark$              |        |  |
|                                              | Partition coefficient n-<br>octanol/water                                       | ASNN                                            | continuous                |                 | 12897                |                     | OCHEM              | =       |      |         |             |                           |        |  |
|                                              |                                                                                 |                                                 |                           |                 |                      |                     |                    |         |      |         |             |                           |        |  |

### Models for log Kow in the CONCERT REACH gateway

| CI<br>CI        | INCR IFAC                                                                       |                                                 | HOM        | E PROJ          | ECT RES              | ULTS                | RESOURCES NEW      | S CONTACT | GATEWAY USER | R GUIDE      |        |  |
|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------|------------|-----------------|----------------------|---------------------|--------------------|-----------|--------------|--------------|--------|--|
| -               | 7.8. Partition coefficient n-octanol/wate                                       | ir.                                             |            |                 |                      |                     |                    |           | GATEWAY      |              |        |  |
|                 | All VEGA AND ToxRead DANISH QSAR DATABAS                                        |                                                 |            | AMBIT OCHEM     |                      |                     |                    |           | GAILINAI     |              |        |  |
|                 | End Point                                                                       | Model                                           | Туре       | Dataset<br>size | Training<br>set size | Test<br>set<br>size | Platform           | Remarks   |              |              |        |  |
|                 | P-CHEM 4.7. Partition coefficient                                               | Dataset                                         |            | 16668           |                      |                     | AMBIT              |           |              |              |        |  |
| $\left \right $ | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow)                        | LogP model (Meylan-<br>Kowwin)                  | continuous | 9961            | 9961                 | o                   | VEGA               |           |              |              |        |  |
|                 | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow)                        | LogP model (MLogP)                              | continuous | 9961            | 9961                 | 0                   | VEGA               | <b>_</b>  |              |              |        |  |
|                 | P-CHEM, 4.7 Octanol-water<br>partition coefficient (Kow); OECD<br>107, 117, 123 | LogP model (ALogP)                              | continuous | 9961            | 9961                 | 0                   | VEGA               | =         |              | ÇI           | $\sim$ |  |
|                 | LogD (at multiple pH'es)                                                        | LogD (EPI)                                      | continuous |                 |                      |                     | DanishQSARDatabase |           | CI           | $\checkmark$ | IJ     |  |
|                 | Minimum LogD in the pH interval<br>4-9                                          | Minimum LogD in<br>the pH interval 4-9<br>(EPI) | continuous |                 |                      |                     | DanishQSARDatabase | =         | Ĺ            |              |        |  |
|                 | Partition coefficient n-<br>octanol/water                                       | Log Kow (EPI)                                   | continuous |                 |                      |                     | DanishQSARDatabase | =         | CI-          |              |        |  |
|                 | Partition coefficient n-<br>octanol/water                                       | ASNN                                            | continuous |                 | 12897                |                     | OCHEM              |           |              |              |        |  |
|                 |                                                                                 |                                                 |            |                 |                      |                     |                    |           |              |              |        |  |

### VEGA Models for log Kow

- Meylan/KOWWIN v1.1.5: VEGA implementation of EPISUITE KOWWIN. Regression equation is based on the hydrophobicity contribution of 120 atom types. It is an implementation of the atom fragment contribution (AFC) method described by Meylan et al., 1995. It is a "reductionist" approach and it was developed via multiple linear regressions of reliable, experimental log P values.
- MLogP v1.0.1: VEGA implementation of the multiple linear regression developed by Moriguchi et al. (1992; 1995) that relates 13 structural parameters with the experimental log P values of 1230 compounds with different structures
- ALogP v1.0.1: VEGA implementation of the Ghose-Crippen-Viswanadhan regression equation based on the hydrophobicity contribution of 120 atom types.



01 Introduction on models and current case study




Running models and analysis of results

03

Documentation of QSAR results in IUCLID for REACH dossier preparation TABLE OF CONTENTS

04 Summary and conclusions

### VEGA: introduction

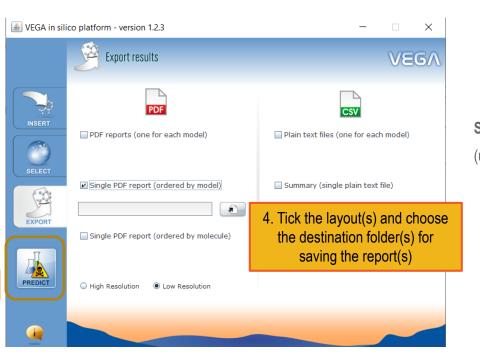



VEGA: Virtual models for Evaluating the properties of chemicals within a Global Architecture

- Developed mainly by Mario Negri Institute (Milan) and Kode s.r.l. (Pisa)
- Free platform developed based on contributions from EU projects
- Includes more than 100 statistical and knowledge-based (Q)SAR models for the prediction of (eco)toxicity, environmental fate and physico-chemical properties of chemicals.

### VEGA: running predictions

| 🛓 VEGA in sili | co platform - version 1.2.3 — 🗌 🗙                                   |   |
|----------------|---------------------------------------------------------------------|---|
|                | Insert chemicals VEG/                                               | 2 |
| 23             | Insert SMILES: Import File                                          |   |
| INSERT         | c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl                                        |   |
| SELECT         | ID SMILES<br>Molecule 0 c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl                |   |
| EXPORT         | 2. Added molecules are listed and 2D<br>structure can be visualized |   |
| PREDICT        |                                                                     | ļ |
|                | *                                                                   |   |
|                | Delete All Delete                                                   |   |
|                |                                                                     |   |




### VEGA: running predictions

Full PDF reports:

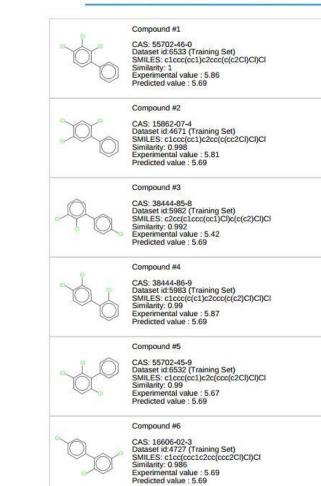
- prediction(s) results
- applicability domain
- experimental data of the target (if any)
- most similar substances
- other supporting info (if any)

5. Click on «Predict»



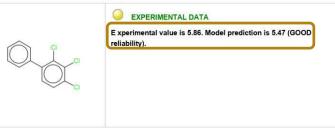
# Simplified text reports (useful for excel import)

### Determination of log Kow: Meylan/KOWWIN


|                                                                                                   | SEXPERIMENTAL DATA                                                                  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                   | E xperimental value is 5.86. Model prediction is 5.69 (GOOD reliability).           |
|                                                                                                   | nto the Applicability Domain of the model                                           |
| Measured Applicability D                                                                          | Iomain Scores                                                                       |
| Global AD Index                                                                                   |                                                                                     |
| AD index = 1                                                                                      |                                                                                     |
| Explanation: The predicted compou                                                                 | nd is into the Applicability Domain of the model.                                   |
| Similar molecules with known exper<br>Similarity index = 1<br>Explanation: Strongly similar compo | rimental value<br>ounds with known experimental value in the training set have been |
| Accuracy of prediction for similar me                                                             | olecules                                                                            |
| Accuracy index = 0.17                                                                             |                                                                                     |
| Explanation: Accuracy of prediction                                                               | for similar molecules found in the training set is good                             |
| Concordance for similar molecules                                                                 |                                                                                     |
| Concordance index = 0.17                                                                          |                                                                                     |
| Explanation: Similar molecules four<br>predicted value                                            | id in the training set have experimental values that agree with the                 |

Maximum error of prediction among similar molecules

Max error index = 0.17


Explanation: the maximum error in prediction of similar molecules found in the training set has a low value, considering the experimental variability.

#### Similar Compounds, with Predicted and Experimental Values



11

### Determination of log Kow: MLogP



Compound: Molecule 0 Compound SMILES: c1ccc(cc1)c2ccc(c(c2GI)CI)CI Experimental value: 5.86 Predicted LoaP: 5.47

Reliability: The predicted compound is into the Applicability Domain of the model

#### Measured Applicability Domain Scores

#### Global AD Index

AD index = 1

Explanation: The predicted compound is into the Applicability Domain of the model.

Similar molecules with known experimental value

Similarity index = 1

Explanation: Strongly similar compounds with known experimental value in the training set have been ..

Accuracy of prediction for similar molecules

Accuracy index = 0.388

Explanation: Accuracy of prediction for similar molecules found in the training set is good.

Concordance for similar molecules

Concordance index = 0.388

Explanation: Similar molecules found in the training set have experimental values that agree with the predicted value..

Maximum error of prediction among similar molecules

Max error index = 0.388

Explanation: the maximum error in prediction of similar molecules found in the training set has a low value, considering the experimental variability..

#### Similar Compounds, with Predicted and Experimental Values



#### Compound #1

CAS: 55702-46-0 Dataset id:6533 (Training Set) SMILES: c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl Similarity: 1 Experimental value : 5.86 Predicted value : 5.472



#### Compound #2

CAS: 15862-07-4 Dataset id:4671 (Training Set) SMILES: c1ccc(cc1)c2cc(c(cc2Cl)Cl)Cl Similarity: 0.998 Experimental value : 5.81 Predicted value : 5.472



#### CA Da SM Sir Ex

CAS: 38444-85-8 Dataset id:5982 (Training Set) SMILES: c2cc(c1cc(cc1)Cl)c(c(c2)Cl)Cl Similarity: 0.992 Experimental value : 5.42 Predicted value : 5.472



#### Compound #4

CAS: 38444-86-9 Dataset id:5983 (Training Set) SMILES: c1ccc(c(c1)c2ccc(c(c2)Cl)Cl)Cl Similarity: 0.99 Experimental value : 5.87 Predicted value : 5.87

#### Compound #5



CAS: 55702-45-9 Dataset id:6532 (Training Set) SMILES: c1ccc(cc1)c2c(ccc(c2Cl)Cl)Cl Similarity: 0.99 Experimental value : 5.67 Predicted value : 5.472

Compound #6

CAS: 16606-02-3 Dataset id:4727 (Training Set) SMILES: c1cc(ccc1c2cc(ccc2Cl)Cl)Cl Similarity: 0.986 Experimental value : 5.69 Predicted value : 5.472

### Determination of log Kow: ALogP

|                                                                                                             | EXPERIMENTAL DATA                                                             |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                             | E xperimental value is 5.86. Model prediction is 5.34 (MODERATE reliability). |
| Compound: Molecule 0<br>Compound SMILES: c1ccc(cc1)c2cc<br>Experimental value: 5.86<br>Predicted LooP: 5.34 | c(c(c2Cl)Cl)Cl                                                                |
|                                                                                                             | could be out of the Applicability Domain of the model                         |
| Measured Applicability                                                                                      | y Domain Scores                                                               |
|                                                                                                             |                                                                               |
|                                                                                                             |                                                                               |
| Global AD Index<br>AD index = 0.85                                                                          |                                                                               |
|                                                                                                             | bound could be out of the Applicability Domain of the model.                  |
|                                                                                                             |                                                                               |
| Similar molecules with known ex                                                                             | perimental value                                                              |
| Similarity index = 1                                                                                        |                                                                               |
| Explanation: Strongly similar con                                                                           | npounds with known experimental value in the training set have been           |
| Accuracy of prediction for similar                                                                          | molecules                                                                     |
| Accuracy index = 0.518                                                                                      |                                                                               |
| Explanation: Accuracy of predicti                                                                           | ion for similar molecules found in the training set is not optimal.           |
| Concordance for similar molecule                                                                            | es                                                                            |
| Concordance index = 0.518                                                                                   |                                                                               |
| Explanation: some similar molect                                                                            | ules found in the training set have experimental values that disagree with th |
| predicted value                                                                                             |                                                                               |
| Maximum error of prediction amo                                                                             | ung similar molecules                                                         |
| Max error index = 0.518                                                                                     |                                                                               |
| Explanation: the maximum error                                                                              | in prediction of similar molecules found in the training set has a moderate   |

value, considering the experimental variability ...

#### Similar Compounds, with Predicted and Experimental Values



13

### Determination of log Kow: summary of VEGA results

| Model                         | Meylan/KOWWIN | MLogP   | ALogP        |  |
|-------------------------------|---------------|---------|--------------|--|
| Predicted log Kow             | 5.69          | 5.47    | 5.34         |  |
| Deviation from experimental   | 0.17          | 0.39    | 0.52         |  |
| value 5.86                    |               |         |              |  |
| Applicability domain          | In            | In      | Could be out |  |
| compliance                    |               |         |              |  |
| Performance on 6 most similar | 6x good       | 6x good | 4x good      |  |
| molecules                     |               |         | 2x moderate  |  |

The better the compliance with the model applicability domain, the more precise the result.

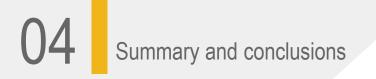
### VEGA: important remarks

- Full documentation of all models is available, as a QMRF
- Supporting information (AD compliance, similar molecules) is provided, allowing expert evaluation
- AD compliance is affected by identified similar molecules from the training or validation set
- Automated AD compliance check is not perfect, user expert critical check is helpful
  - > This affects other tools as well, including commercial ones

Relevant for REACH dossier preparation in IUCLID

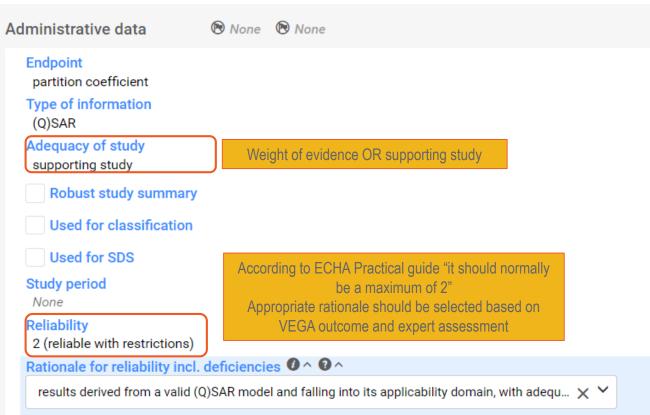
A novel tool called VERA has been developed, aiming also at improving similarity evaluation and AD compliance check (Presentation 17.05.)




01 Introduction on models and current case study



Running models and analysis of results


03

Documentation of QSAR results in IUCLID for REACH dossier preparation TABLE OF CONTENTS



### QSAR results in IUCLID

VEGA (example: Meylan/KOWWIN) outcome reported according to ECHA Practical guide "How to use and report (Q)SARs" Version 3.1 – July 2016



### Q)SAR results in IUCLID

Justification for type of information 1. SOFTWARE

- 2. MODEL (incl. version number)
- 3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL

#### 4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL

[[Explain how the model fulfils the OECD principles for (Q)SAR model validation. Consider attaching the QMRF and/or QPRF or providing a link]

- Defined endpoint:
- Unambiguous algorithm:
- Defined domain of applicability:
- Appropriate measures of goodness-of-fit and robustness and predictivity:
   Mechanistic interpretation:

#### 5. APPLICABILITY DOMAIN

[Explain how the substance falls within the applicability domain of the model]

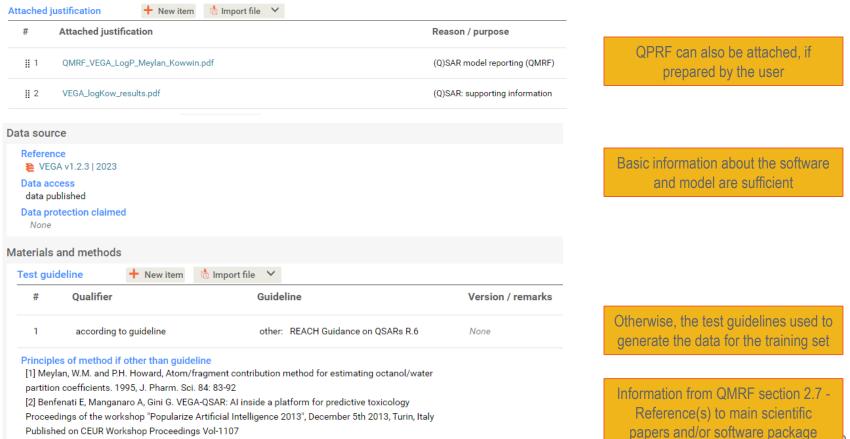
- Descriptor domain:
- Structural domain:
- Mechanistic domain:
- Similarity with analogues in the training set:
- Other considerations (as appropriate):

#### 6. ADEQUACY OF THE RESULT

[Explain how the prediction fits the purpose of classification and labelling and/or risk assessment]

#### VEGA v1.2.3

#### Log P model (Meylan/Kowwin) v1.1.5


c1ccc(cc1)c2ccc(c(c2CI)CI)CI

QMRF can be attached (next slide) and referenced here

VEGA report can be attached and used as reference. However, if expert assessment is performed, it can be described here.

Expert assessment is needed

### Q)SAR results in IUCLID



---

### (Q)SAR results in IUCLID

| Test material                                                                                         |                       |
|-------------------------------------------------------------------------------------------------------|-----------------------|
| Test material information<br>[2] 2,3,4-trichlorobiphenyl_QSAR   2,3,4-trichlorobiphenyl   1,2,3-trich | nloro-4-phenylbenzene |
| Additional test material information None                                                             |                       |
| Specific details on test material used for the study<br>SMILES: c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl          |                       |
| Specific details on test material used for the study (confidentia<br>None                             | I) 🔺                  |

#### Test material must reflect the evaluated structure

If multiple constituents are assessed for one substance, the Practical Guide suggests preparation of separate entries

#### **Results and discussion**

| Partition | n coefficient | + New item |                             |      |                                                                           |
|-----------|---------------|------------|-----------------------------|------|---------------------------------------------------------------------------|
| #         | Key result    | Туре       | Partition coefficient Temp. | рН   | Remarks on result                                                         |
| 1         |               | log Pow    | 5.69                        | None | other: QSAR result,<br>information on temperature<br>and pH not available |

| 55702-46-0



01 Introduction on models and current case study



Running models and analysis of results

03

Documentation of QSAR results in IUCLID for REACH dossier preparation TABLE OF CONTENTS



### Summary

- <u>https://www.life-concertreach.eu/results/results-gateway/</u> The CONCERT REACH gateway is available; QSAR predictions are possible for REACH purposes
- QSAR prediction of log Kow using 3 VEGA models was presented and evaluated
- Preparation of a QSAR IUCLID entry for log Kow was shown, focusing on critical fields

### Conclusions

 Applicability domain compliance is the most important factor which should be taken into account when evaluating the reliability of the QSAR results

#### The predictions may be used in the context of REACH:

- To cover the endpoint fully
- Together with other information (e.g. experimental data) as supporting data or part of WoE

#### Acknowledgement:

- The knoell Academy team
- Prof. Emilio Benfenati and the team, Mario Negri Institute, Milan
- The QSAR team at knoell
- The speakers of today and of 17 May
- The partners of the LIFE CONCERT REACH project







### Models for log Kow

How to select appropriate model(s) for my substance?

- <u>A priori selection is generally not possible</u>
- However, **experience in using the models** might suggest which one could give more reliable results for certain type of substances (e.g., industrial chemicals, active substances, etc.)
- Information on **compliance** of the target molecule **with the applicability domain of the model**
- Comparison with similar molecules with available experimental results
- Documentation (QMRF, QPRF)
- It is generally required to use multiple and different models for evaluating the same endpoint

Expert analysis of the results and supporting information is needed

### VEGA Meylan/KOWWIN vs EPI Suite KOWWIN

- Both models should provide the same result for any molecule.
- Advantages of VEGA: analysis of the compliance with applicability domain of the model is performed and reported. QMRF is available. The results can be directly compared to the results of other available QSAR models (MLogP, ALogP).
- Advantage of EPI Suite: the final result is explained in terms of contributions of single molecular fragments (more transparency)

```
Kowwin Results
Print Save Results Copy Remove Window Help
                  Log Kow(version 1.69 estimate): 5.69
Experimental Database Structure Match:
  Name
           : 2,3,4-TRICHLORO-1,1'-BIPHENYL
  CAS Num : 055702-46-0
  Exp Log P: 5.86
  Exp Ref : BIOBYTE (1995)
SMILES : c1ccc(cc1)c2ccc(c(c2CL)CL)CL
CHEM :
MOL FOR: C12 H7 CL3
MOL WT : 257.55
                                                              COEFF
 TYPE
       I NUM
                      LOGKOW FRAGMENT DESCRIPTION
                                                                        VALUE
 Frag
      | 12
                Aromatic Carbon
                                                             0.2940
                                                                        3.5280
 Frag
          3
                -CL
                        [chlorine, aromatic attach]
                                                             0.6445
                                                                        1.9335
 Const
                Equation Constant
                                                                        0.2290
                                                          Log Kow
                                                                        5.6905
```