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The gap between authorities and
In silico models

Authorities use:
* data
* theoretical explanation

In silico models provide:
predictions




Integrating observation and theory (i)

Induction Deduction




The perspective: data
theory Integrated

* Heterogeneous inputs
* Integration?




Weight of evidence (WoE): EFSA Guidance

‘ J: EFSA Journal

SCIENTIFIC OPINION

ADOPTED: 12 July 2017
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The TWO predictions

* To predict the property value of the substance - unknown
value, | may know the (potential) mechanism

* To predict the mechanism — | may have all tox values of all
substances, but ignore the mechanism.




SWAN, the door between the two worlds:
real and virtual
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VEGAHUB - the different tools

Do you need assistance for
a property prediction ?

CONTACT US

Offering a Family of tools to evaluate
chemical hazard: VEGA, ToxRead,
SWAN, VERA, ToxWeight, ToxDelta,
and JANUS.

VEGA is the QSAR software with tens
of models for individual properties.

Vermeer

ToxEraser

’ 8] = )
VEGA HUB - QSAR - Download - %@AF\UE’ Community News Contacts

https://www.vegahub.eu/



VEGA —the info on data and mechanism

Prediction: Reliability:

Prediction is Possible NON-Mutagen
critical aspects, which require to be
- similar molecules found in the train
that disagree with the predicted valu

Compound #1

CAS: 154028-32-7

Dataset id: 2989 (Training set)

SMILES: O(c2ccec(C=Cclccc(N)cc1)c2)C
Similarity: 0.907

Expenmental value: Mutagenic
Predicted value: Mutagenic

Alerts (not found in the target). SM44; SM104
Compound #2

CAS: 7570-37-8

Dataset id: 1345 (Training set)

SMILES: O(c1cece(ce1)C=Cc2ccec(N)cc2)C
Similarity: 0.905

Expenmental value: Mutagenic
Fredicted value: Mutagenic

Alerts (not found in the target). SM44; SM104
Compound #3




VEGA —the mechanism and the data

vVeEGA Mutagenicity (Ames test) model (ISS) 1.0.2

4.1 Reasoning:
Relevant Chemical Fragments and Moieties

(Molecule 3) Reasoning on fragments/structural alerts:

Fragment found: SA21 Alkyl and aryl N-nitroso groups

R R 1= Aliphatic or aromatic carbon.

R2= Any atom/group

M o
/
a g// \\N //
Alkyl and aryl N-nitroso groups
Following, the most similar compounds from the model's dataset having the same fragment.

CAS: 55-18-5
Dataset id: 516 (Training set)
SMILES: O=NMN(CC)CC

NK“N Similarity: 1
o
o

Experimental value: Mutagenic
Predicted value: Mutagenic

Q CAS 621-64-7
.u Dataset id: 520 (Training set)
. SMILES: O=NN(CCC)CCC
Similarity: 0.206
\\‘ Expernmental value: Mutagenic
Predicted value: Mutagenic

11 T AC- 2047234 77 4
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3.2 Applicability Domain: Q;)

Measured Applicability Domain Scores

Global AD Index
AD index = 0.979
Explanation: the predicted compound is into the Applicability Domain of the model.

Similar molecules with known experimental value
Similanty index = 0.958
Explanation: strongly similar compounds with known experimental value in the training set have been found.

Accuracy of prediction for similar molecules
Accuracy index = 1
Explanation: accuracy of prediction for similar molecules found in the training set is good.

Concordance for similar molecules

Concordance index =1

Explanation: similar molecules found in the training set have experimental values that agree with the predicted
value.

Model's descriptors range check

Descriptors range check = True

Explanation: descnptors for this compound have values inside the descnptor range of the compounds of the
training set.

Atom Centered Fragments similarity check

ACF index = 1

Explanation: all atom centered fragment of the compound have been found in the compounds of the training
set.

Symbols explanation:

4
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The feature has a good assessment, model is reliable regarding this aspect.
The feature has a non optimal assessment, this aspect should be reviewed by an expert.

The feature has a bad assessment, model is not reliable regarding this aspect.

The reliability of
the predictions.
ADI
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ADI - The demonstration

Human classification models

in AD

possibly out of AD

Environmental regression models

in AD

possibly out of AD

out AD

out AD

* Aromatase activity === Hepatic Steatosis MIE PPARg up
=== Carcinogenicity ANTARES == Hepatic Steatosis MIE PXR up
* Carcinogenicity CAESAR == |n Vitro micronucleus
=== Carcinogenicity SFI class === |n Vivo micronucleus
= Carcinogenicity SFO class == Mutagenicity CAESAR
=== Chromosomal aberration CORAL === Mutagenicity ISS
* Developmental Toxicity CAESAR == Mutagenicity KNN
=== Developmental/Reproductive Toxicity CORAL ~=~ Mutagenicity SARpy
» Estrogen Receptor RBA === Skin sensitization CAESAR
== Hepatic Steatosis MIE NRF2 === Skin sensitization JRC
* Hepatic Steatosis MIE PPARa up == Skin sensitization NCSTOX
+ Air HL CORAL T
—BCF Arnot_Gobas Danlell et aI. 2023
» BCF CAESAR
== BCF KNN
»- BCF Meylan

== KkM/HL EpiSuite
* Persistence Sediment reg
- Persistence Water reg



V&R Vs previous tools

VERA’s advantages:
*“Accept almost all” at the beginning
*Multiple metrics
*Memberships
*Comparing clusters
*Predictions
*Batch mode
*Integrated with QSAR
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L . VERA: the new concept of
similarity
o STRUCTURAL
= SIMILARITY
TOXICOLOGICAL Y-
SIMILARITY .
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General Workflow of VERA

Calculation of VEGA sim. and filtering
'I g o VEGA sim > 0.65
x| = %

Searching SA in the target and filtering

2 Q by

@@@

Searchmg MGs in the target calculation ~  Considering MG in
of grouping common and not

e}

s:m:lanty with the target

Reasoning
000
1 11

® .
‘e INGYEXPERIMENTAL DATA
0. .. N SIEIED MODELS FOR REACH 4
°* ° | |
“ LIFE17 GIE/IT/000461
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General Workflow of VERA
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NH-
OH  VEGAsimilarity
=0.65
—-
CH;
Target Molecule
SMILES VEGA_sim EXPErmental gop g
= value =
CeleceociN 0.875 1 0.857
Celecce(Njed 0,880 1 0.786
Cetece(Njeet 0.878 1 0.786
Netcecf-c2ececc2)ecO 0.837 0 0.761
COeleee(CleeiN 0.938 1 0.744
Coctees(Nje(Clet 0914 1 0.744
CeloceiCle(Nje1 0.884 1 0.744
Cetoe(-c2oooce2Cleec1N 0742 1 0.744
Celeo(Cle{N)cc1C 0.848 1 0.723
Cenle2ooces2c2o0(Njoco21 0.705 1 0716

10 most similar
compounds

"

-.cakeulation of grouping

0.650 COe1cee203e(oooet 3)OC([N+)(=0)[0-]}=C2
0.650 Clcleceeel
0.650 CC(CHCINCC{OWCOc1oocc2¢1CCCC2=0
0.650 COe1cce{C{=0)C(Br)=CC{=0)0jcct

Searching MGs
in similar compounds...
—

similarity

Searching MGs
in target
B

Similarity SMILES Experimental value
0 0.938 COclcco(Clec N 1
1 0.915 COclcceceN 1
2 0.914 COc1cee{N)e(C)e1 1 SA
3 0510 COclcoooc1[NH3+] 1
4 0.906 COctecc(Njeet [ Searching SA in target = OH
483 0.651 CG{C)C(=0)Nc1cce([N+)(=O}O-])e(C{F)(F)F)c1 1 O CHs

Filter similar compounds withSA

}

SMILES VEGA_sim EXperimental
= value
CeleceeeiN 0.875 1
Ceolooco{Nic1 0.890 1
Cetece(M)ee 0.878 1
Nec1eco{-c2ccocc2)ec1O 0.837 1]
COclece(CleetN 0.938 1
CocleooiNIH(CIE1 0.914 1
Celoce(CleMie1 0.884 1
Celog(-c2ooooc2C)cee N 0.742 1
Celee(Cle(Njes1C 0.848 1

CCnlc2ccooc2eec(Mjccc2 0.705 1

Grouping: SA + MG1

Grouping: SA + MG2

NO TOX NO TOX

H4C.
e H,C ‘0 CHy
HsC
CHe NH, NH,
TOX TOX TOX
CH, CHy
0 @f o
HoN
TOX NO TOX TOX

!

Cluster: INACTIVE

!

MG1: possible exception rule

!

VERA ASSESSMENT:

NH,

OH

CH5

!

Cluster: ACTIVE

Not Toxic due to exception rules
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EXPERIMENTAL DATA
MODELS FOR REACH

The output
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VERA - VIRTUAL EXTENSIVE READ ACROSS
Similarity and Grouping for Carcinogenicity endpoint

Input molecule: O=NN(clnccccl)C
Vera Group Across - 0.2

VERA - Carcinogenicity model

INPUT MOLECULE

SMILES: O=NN(c1ncceel)C
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EXPERIMENTAL DATA
MODELS FOR REACH

17 GIE/IT/000461

1. Prediction Summary

Found in DB: Yes
Experimental Value: Active

Prediction
Active

The output

Toxicity

Reliability

Yo Ve %

VERN
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The output

1.1 Structural Alerts in the target molecule

- % toxic prevalence in DB

VERN

Alert Name

Fragment

SA21 - SA21_gen.Alkyl and aryl N-nitroso
groups

o»\/@
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1.2 Molecular Groups in the target molecule

% toxic prevalence in DB
Number of compounds used for prediction with MG

Molecular Group name

Fragment

MG1: NHO - Number of Tertiary amines

o2 “‘N@

ERN
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2. Similar Compounds
2.1 Six most similar compounds

€3]
SMILES: O=NN(clnceceel)C

Class: Active

Vega Similarity: 1

Group Similarity: 1 O
p ity Oﬁ\ =

Similarity Mean: 1 |

Molecular Groups matches in common with target mol: 5

Molecular Groups type found: 4

* NHO: 2 matches

* aniline: 1 match

* nitroso: 1 match

* pyridine: 1 match

Structural Alerts found: 1
* SA21: 2 matches

&3]

SMILES: O=NN(clcncecl)C

Class: Non Active

Vega Similarity: 0.915 N

Group Similarity: 1 O
N A

Similarity Mean: 0.958 |

Molecular Groups matches in common with target mol: 5

Molecular Groups type found: 4

* NHO: 2 matches

* aniline: 1 match

* nitroso: 1 match

* pyridine: 1 match

Structural Alerts found: 1
* SA21: 2 matches

The output

[©)]

SMILES: O=NN{clcenccl)C
Class: Mon Active

Vega Similarity: 0.916

Group Similarity: 1

Similarity Mean: 0.958
Molecular Groups matches in common with target mol: 5
Molecular Groups type found: 4
* NHO: 2 matches

*aniline: 1 match

* nitroso: 1 match

* pyridine: 1 match

Structural Alerts found: 1
* 5A21: 2 matches

@

SMILES: O=NN(c3ccc(C=Cc2ccncleccecl2)cc3)C
Class: Active

Vega Similarity: 0.689

Group Similarity: 0.953

Similarity Mean: 0.821

Molecular Groups matches in common with target mol: 5
Molecular Groups type found: 7

* NHO: 2 matches

* aniline: 1 match

* nitroso: 1 match

* pyridine: 1 match

* bicyclic: 1 match

* benzene: 1 match

* para_hydroxylation: 1 match

Structural Alerts found: 1
* SA21: 2 matches

O{‘\N}\I

/
Mo

O\Q

O

)

SMILES: O=NN2CCCCC2(clcnceel)

Class: Active

Vega Similarity: 0.732

Group Similarity: 0.9

Similarity Mean: 0.816

Molecular Groups matches in common with target mol: 4
Molecular Groups type found: 3

* NHO: 2 matches

* nitroso: 1 match

* pyridine: 1 match

Structural Alerts found: 1
* 5A21: 2 matches

(6)

SMILES: O=NN2CC=CCC2(clcncccl)

Class: Non Active

Vega Similarity: 0.741

Group Similarity: 0.9

Similarity Mean: 0.821

Molecular Groups matches in common with target mol: 4
Molecular Groups type found: 3

* NHO: 2 matches

* nitroso: 1 match

* pyridine: 1 match

Structural Alerts found: 1
* SA21: 2 matches
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2.2 Toxic Prevalence of Structural Alerts and Molecular Groups
Analysis of the toxic/non-toxic prevalence of the structural alerts and Molecular Groups found in the target in the all
dataset.

Target's Structural Alerts prevalence in DB

Structural Alerts (SA) in Dataset

v
= uw BB OHHEHESEHEREYER

sz
EA in target molecule
W actrve W non active

Target's Molecular Groups prevalence in DB

Molecular Groups (MG) in Dataset

o

= w B GE WY HESEEHERD WE R E

MG N target mokecule

W a-tive W non active
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EXPERIMENTAL DATA
MODELS FOR REACH

The output

3. Reasoning

In this section , clusters with the SA with the Molecular Groups are shown

3
Cluster 1 SMILES: O=NN(clecceecl)C
Ortogonal research based on presence of Benigni Bossa structural alerts and molecular group MNHO Class: Active
Vega Similarity: 0.844
This cluster is labeled Active & 2y
(1
SMILES: O=NN(clccnecl)C 5
Class: Non Active 4)
Vega Similarity: 0.916 SMILES: O=NN([O-])clcececl
Class: Active
Vega Similarity: 0.811
(2)
SMILES: O=NN(clcncecl)C (5)
Class: Non Active SMILES: O=NN(O)clecceel
Class: Active

Vega Similarity: 0.915
Vega Similarity: 0.811
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4, Cluster's results

Cluster 1
and molecular group NHO

This cluster is labeled Active

<

Cluster 2

and molecular group aniline

This cluster is labeled Active

J

Cluster 3
and molecular group nitroso

This cluster is labeled Active

<

Cluster 4
and molecular group pyridine

This cluster is labeled Active

J

The output

According to these clusters, the final assessment of target molecule is :
Active

O";N N N
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oftware implementing Weight of evidence for Assessing the properties of
substances, integrating Non-testing method

Integrates

QSAR Workflow

ERN (JANUS)

Reliability of WoE prediction
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SWAN - Carcinogenicity model
INPUT MOLECULE
2. Q5AR Workflow - details
QSAR Workflow prediction: Carcinogenic
QSAR Workflow reliability: Moderate Reliability (0.6)
Model name N
Carcinogenicity classification model (Antares) Carcinogen (M
prediction
Carcinogenicity classification model (Benigni-Bossa |Carcinogen (G
SMILES: C1=CC(=CC=C1 rulebase) prediction
Carcinogenicity classification model (Caesar) NON-Carcinog
prediction
Carcinogenicity classification model (ISSCAN-CGX) |Carcinogen (G
. o prediction
1. Prediction Summal ¥ Carcinogenicity classification model (Oral - IRFMN)  |Carcinogen (G
prediction

Found in DB: No
Experimental Value: Not found

Prediction made by the applica

Prediction
Carcinogenic

Carcinogenicity classification model (Inhalation -
IRFMN) prediction

Carcinogen (G

Carcinogenicity slope factor model (Oral - IRFMN)  |-0.07 (GOOD r
prediction
Carcinogenicity slope factor model (Inhalation - 1.1 (MODERA®

IRFMN) prediction

Toxicity

[+

Reliability

VERA Read Across tool: Carcinogenic - High Reliability
QSAR Workflow: Carcinogenic - Moderate Reliability

| P

Alert Name Fragment

SA28 - SA28_gen.Primary aromatic amine,
hydroxyl amine and its derived esters (with AR
restrictions). SA28 Primary aromatic amine, l\)l N
hydroxyl amine and its derived esters (with lsi___J\m
restrictions): Pimary aromatic amine,

hydroxyl amine and its derived esters (with

H% toxic prevalence in DB
Number of compounds used for prediction with MG

Molecular Group name

Fragment

MG1: ArN - Number of N functional groups
attached to aromatics

e ———

Molecular Group name

Fragment

MG3: Ar - Cl, Br bound to aromatic ring

o




Solving conflicts

Based on the relative reliability of the QSAR versus Read-Across

5

File

w R

woe_results_Carcinogenicity_1.txt

Modifica Visualizza

Smiles

Janus Prediction

C1=CC(=CC=C1C2=C(C=C(C=C2)C1)C1)N Carcinogenic
C1=CC(=CC=C1C2=C(C=C(C=C2)C1)C1)0 Carcinogenic

Janus Reliability
Moderate Reliability
Moderate Reliability

VERA Prediction
Carcinogenic
NON Carcinogenic

Vera Reliability
High Reliability
Low Reliability

W.E.I Result
Carcinogenic - High Reliability
NA - NA

0=NN(clnccccl)C

Carcinogenic

High Reliability

Carcinogenic

High Reliability

tarcinogenic - High Reliability



Conclusions

* A conceptual scheme to replicate the expert’s approach
* A tool to integrate QSAR and read-across

* Improved reasoning on both QSAR and read-across

* General methods and endpoint-specific components

Next steps

Extending to more endpoints
Further parameters to be added



Thank you for
your attention!
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