

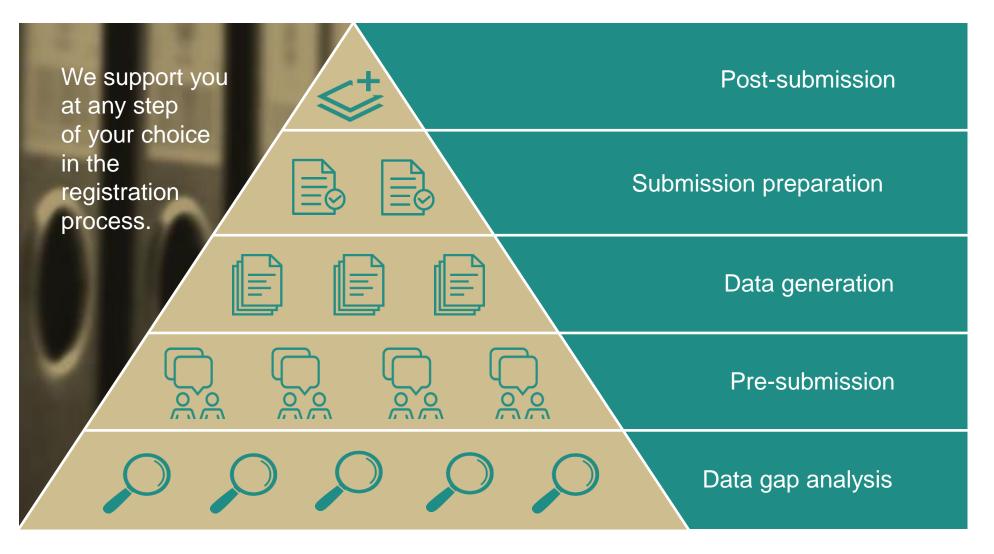
Using QSAR results for REACH dossier preparation: lessons learned from a consultant company's perspective

19/06/2023, LIFE CONCERT REACH project – Final Workshop

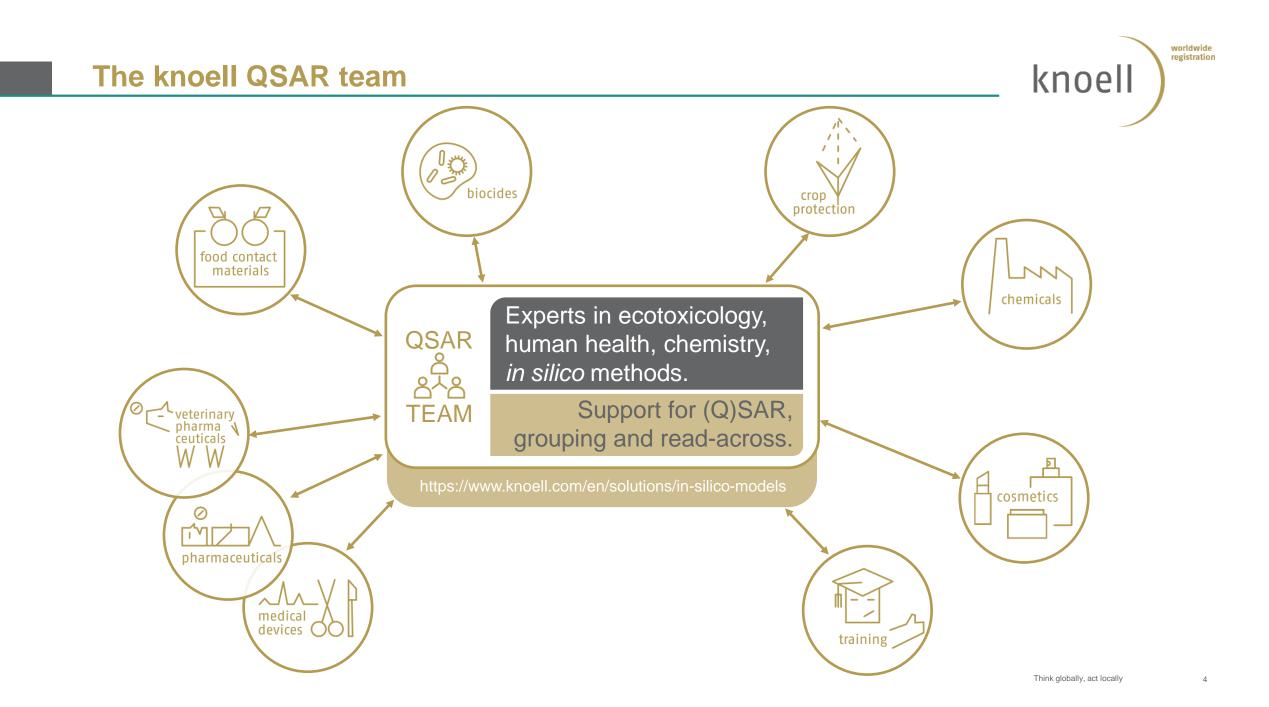
Rodolfo Gonella Diaza, Ph.D. *In silico* expert knoell Germany GmbH qsar@knoell.com

knoell worldwide

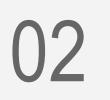
Our experts are located in North America, Europe and Asia with partners worldwide.


knoell

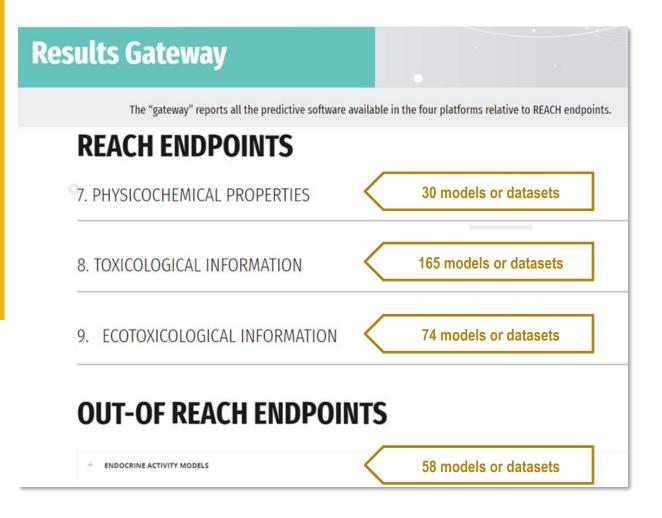
worldwide registration


If a country is not covered by your interest, please contact us. We can make many things possible and are continuously expanding.

* service coverage can vary per country due to resources and expertise



3



02 REACH: practical examples of (Q)SAR data generation and evaluation

TABLE OF CONTENTS

REACH: Documenting (Q)SAR 03 results in IUCLID for dossier preparation

https://www.life-concertreach.eu/results/results-gateway/

More than 30 REACH endpoints addressed by:

knoell

- 234 statistical and knowledge-based (Q)SAR models;
- 35 sets of experimental data.

The (Q)SAR models can be used within **other** regulatory frameworks.

In addition, **58 models** for evaluation of potential **endocrine activity**.

IFE17 GIE/IT/000461

All VEGA AND Tox	Read DANISH QS	DANISH QSAR DATABASE			OCHEM			
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross- validation procedure	Platform	Remarks
BCF		continuous					DanishQSARDatabase	
Log BCF	Log BCF (L/kg wet-wt) (EPI)	continuous					DanishQSARDatabase	=
Whole Body Primary Biotransformation Fish Half-Life	Whole Body Primary Biotransformation Fish Half-Life (days) (EPl)	continuous					DanishQSARDatabase	
BCF Arnot-Gobas (upper trophic) Including Biotransformation	BCF Arnot-Gobas (upper trophic) Including Biotransformation (L/kg wet-wt) (EPI)	continuous					DanishQSARDatabase	
BCF Arnot-Gobas (upper trophic) Zero Biotransformation	BCF Arnot-Gobas (upper trophic) Zero Biotransformation (L/kg wet-wt) (EPI)	continuous					DanishQSARDatabase	=
BAF Arnot-Gobas (upper trophic) Including Biotransformation	BAF Arnot-Gobas (upper trophic) Including Biotransformation (L/kg wet-wt) (EPI)	continuous					DanishQSARDatabase	
BAF Arnot-Gobas (upper trophic) Zero Biotransformation		continuous					DanishQSARDatabase	

For each endpoint, **multiple models are** available

Examples:

- 12 models for bioconcentration factor (BCF)
- 8 models for octanol/water partition coefficient (log Kow)
- 24 bacterial mutagenicity (Ames test) models

Endpoints selected as case studies for practical examples Next section of this presentation

With all these models available, questions can arise:

Q1: Which model(s) should I use?

Q2: Do **regulators** indicate reliable models?

Q3: Which data can be generated and for which purpose?

CONCERTREACH CONCERTING EXPERIMENTAL DATA AND IN SILICO MODELS FOR REACH

Q1: Which model(s) should I use?Q2: Do regulators indicate reliable models?

- <u>A priori selection is generally not possible</u>
 - Indeed, regulators don't/can't give clear indications
 - However, experience in using the models and information from developers (e.g., which substances compose the training set) might suggest which model could give more reliable results for certain type of substances (e.g., industrial chemicals, active substances, etc.)
- Selection can be based on:
 - Information on **compliance** of the target molecule **with the applicability domain of the model**
 - Comparison with similar molecules with available experimental results
- It is generally required to use multiple and different models for evaluating the same endpoint

Expert analysis of the results and supporting information is needed

Tools in LIFE CONCERT REACH gateway provide the required information

(next section)

Q3: Which data can be generated and for which purpose?

REACH Regulation (EC) No 1907/2006

Results from (Q)SAR model predictions can be used for:

- Experimental data replacement (e.g., physico-chemical and environmental fate properties)
- Supporting (eco)toxicological data (e.g., weight of evidence (WoE))
- Impurities evaluation
- Supporting read-across strategies
- Screening and prioritization
- Testing strategies definition

Q3: Which data can be generated and for which purpose? In silico methods are increasingly used in several other regulatory frameworks

Impurities (eco)toxicological assessment (when **no experimental data available** or for **testing strategy**)

Grouping strategies (for read-across)

Metabolites or residues prediction or assessment (when **no experimental data available** or for **testing strategy**)

Endocrine Disruption assessment (WoE with experimental evidence)

Non-intentionally added substances (NIAS) assessment food contact (when **no experimental data available** or for **testing strategy**)

OC

materials

pharmaceuticals

Cosmetics

Take home messages

- In silico models are increasingly accepted within several EU regulations
- CONCERT REACH gateway: >300 models for 30 REACH endpoints and potential endocrine activity evaluation
- Regulators do not provide recommendation about the models to use, a priori decision is not possible
- For each endpoint, multiple models should be used
- Results from *in silico* models can **support**, **replace** or **fine tune experimental testing**

02 REACH: practical examples (Q)SAR data generation and **REACH: practical examples of** evaluation

TABLE OF CONTENTS

REACH: Documenting (Q)SAR 03 results in IUCLID for dossier preparation

Four case studies have been presented during two web-seminars

17 May VEGA CAESAR model + Danish QSAR database consensus model for *in vitro* gene mutation in bacteria

2023 VERA automated read-across and application on **carcinogenicity**

31 May 3 VEGA models (Meylan/KOWWIN, ALogP and MLogP) for **octanol/water partition coefficient**

2023 VEGA CAESAR model + OCHEM Gramatica & Papa model for bioconcentration factor

Aim: showing applications of different models from different platforms from the CONCERT REACH network

- 8 (Q)SAR models from 3 platforms, covering 3 REACH endpoints
- 1 novel **automated read-across** tool (VERA), applied on a 4th endpoint

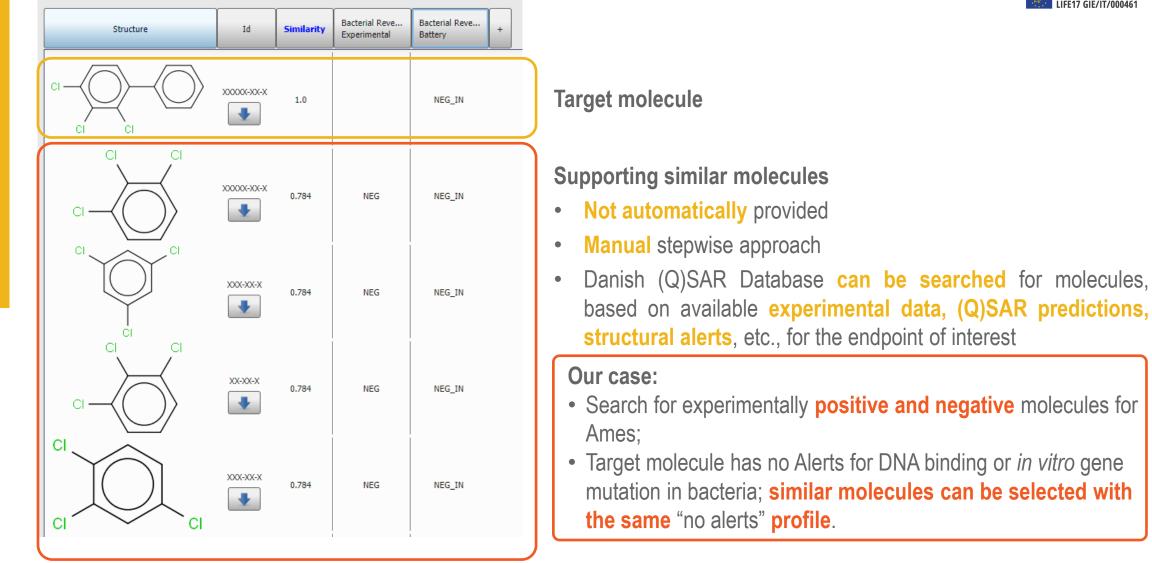
For (Q)SAR models, **preparation of IUCLID entries for REACH dossier** is demonstrated, according to ECHA's Practical guide - How to use and report (Q)SARs

Recordings and slides will be available on CONCERT REACH website

https://www.life-concertreach.eu/

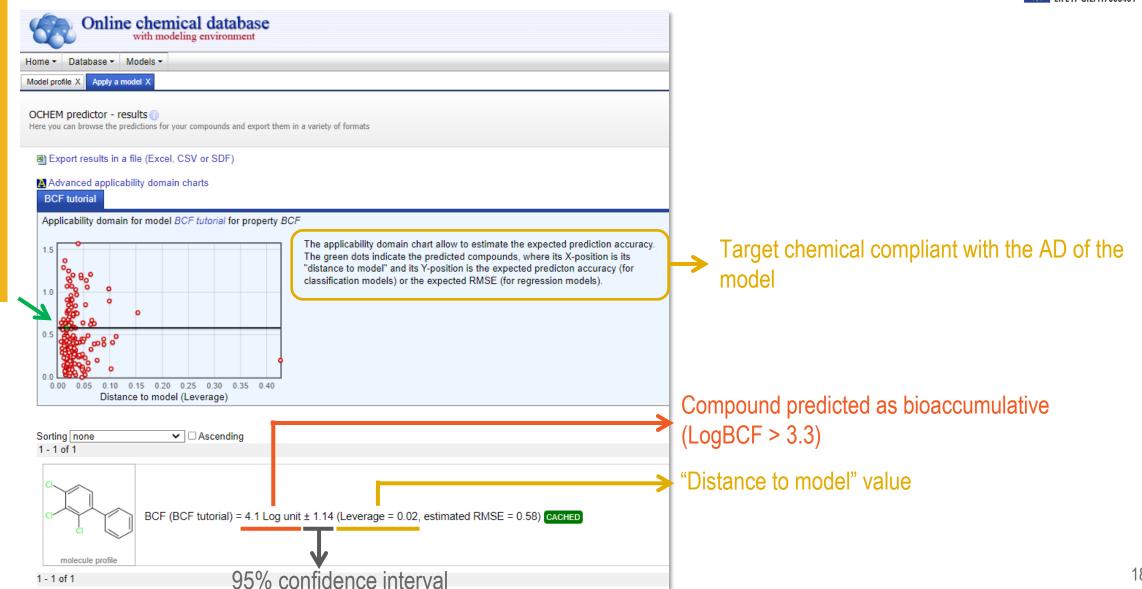
VEGA: Example of critical evaluation of the automated CONCERTING EXPERIMENTAL DATA AND IN SILICO MODELS FOR REACH Applicability Domain (AD) / reliability evaluation 15547 CIE /IT /0004C4 3.1 Applicability Domain: Similar Compounds, with Predicted and Experimental Values Compound #1 Prediction: Reliability: 🈭 😭 😭 CAS: N.A. Prediction is NON-Mutagenic, but the result shows some critical aspects Dataset id:441 (Training Set) SMILES: c1cc(c(cc1c2ccc(c(c2Cl)Cl)Cl)Cl)Cl which require to be checked Similarity: 0.925 - some similar molecules found in the training set have experimental values Experimental value : NON-Mutagenic that disagree with the predicted value Predicted value : NON-Mutagenic Compound #2 CAS: 91-94-1 Two most similar Dataset id:458 (Training Set) SMILES: Nc1ccc(cc1Cl)c2ccc(N)c(c2)Cl Similarity: 0.86 Compound: Molecule 0 molecules considered Experimental value : Mutagenic Compound SMILES: c1ccc(cc1)c2ccc(c(c2CI)CI)CI Predicted value : Mutagenic Experimental value: Predicted Mutagen activity: NON-Mutagenic Alerts (not found also in the target): SA28 Primary aromatic amine, hydroxyl amine and its Structural Alerts: derived esters (with restrictions) Reliability: The predicted compound could be out of the Applicability Domain of the model Remarks none CAS: 72-54-8 Dataset id:473 (Training Set) SMILES: c1cc(ccc1C(c2ccc(cc2)Cl)C(Cl)Cl)Cl Similarity: 0.828 Global AD Index Experimental value : NON-Mutagenic AD index = 0.801Predicted value : Mutagenic Explanation: The predicted compound could be out of the Applicability Domain of the model. Alerts (not found also in the target): SA8 Aliphatic halogens Affected by one Compound #4 Similar molecules with known experimental value Similarity index = 0.889 CAS: 72-55-9 molecule, with a Dataset id:176 (Training Set) Explanation: Strongly similar compounds with known experimental value in the training set have been ... SMILES: c1cc(ccc1C(c2ccc(cc2)Cl)=C(Cl)Cl)Cl Similarity: 0.815 Experimental value : NON-Mutagenic different alerts profile Accuracy of prediction for similar molecules Predicted value : NON-Mutagenic Accuracy index = 1Explanation: Accuracy of p set is good. on for similar molecules found in the Compound #5 CAS: 50-29-3 concordance for similar molecules Dataset id:751 (Training Set) Concordance index = 0.521 SMILES: c1cc(ccc1C(c2ccc(cc2)Cl)C(Cl)(Cl)Cl)Cl Similarity: 0.813 Explanation: some similar molecules found in the training set have experimental values that disagree with the Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic predicted value. Atom Centered Fragmente similarity check A higher reliability could be assigned to the negative prediction, also ACF index = 1 Explanation: all atom centered fragment of the compound have been found in the compounds of the training considering that all other similar molecules (mostly with the same "no set.. 15 alerts" profile) are experimentally negative

Danish (Q)SAR Database: results for *in vitro* gene mutation in bacteria


· bottom (concernence) for Among toot and for th

In vitro Genotoxicity - Bacterial	Reverse M	Iutation Test (<u>Am</u>	<u>1es</u> test)					considered only i	f the outcome for <i>i</i>	I for the four further Ames is Positive and
	Exp	Battery C	CASE Ultra	Leadscope	SciQSAR			in doma	ain (POS_IN)	
Ames test in S. typhimurium (in vitro)		NEG_IN N	NEG_IN	NEG_IN	NEG_IN		-			
*Direct Acting Mutagens (without S9)	N/A	NEG_IN N	NEG_IN	NEG_IN	NEG_IN		The target n	nolecule was eval	uated as complia	nt with AD of all
*Base-Pair Ames Mutagens	N/A	NEG_IN N	NEG_IN	NEG_IN	NEG_OUT		Ames models, which generated consistent negative pr		ative predictions.	
*Frameshift Ames Mutagens	N/A	NEG_IN N	NEG_IN	NEG_IN	NEG_OUT		The	other four models	s should not be co	nsidered
*Potent Ames Mutagens, Reversions ≥ 10 Times Controls	N/A	POS_IN P	POS_OUT	POS_IN	POS_IN	\mathbf{r}				
DTU-developed models * The four models (Direct Acting mutagens (without S9), Base-Pair Ames Mutagens, Frameshift Ames Mutagens,										the four VEGA model
Potent Ames Mutagens) should not be u indication of mechanism or potency for o POS_IN					and the Consensus model have been integrated					
_							ISS	CAESAR	CarDu	KNN
VEGA		Mut. / Non-mut.	t. scores	Used mode	ls		NEG_Mod	NEG_Low	SarPy NEG_Low	POS_Good
Mutagenicity consensus NEG		0.23 / 0.25		4			Four individual mode calculation core vers		model version 1.0.2 contained	d in VEGA version 1.1.4 with
Mutagenicity (Ames) consensus model v 1.2.4 Prediction: POS = Mutagenic, NEG = <u>No</u>			ersion 1.1.4 w	ith calculation	core version		Prediction: POS = M	utagenic, NEG = Non-mutage		mutagenic, POSS.NEG = Possible erate reliability, Low = Low reliability
		-								
						(DNA alerts for AMES	by OASIS, alerts in:		
							- parent only		No alert found	
							In vitro mutagenicity	(Ames test) alerts by ISS, ale	rts in:	
				0 00			- parent only		No alert found	
Structural alerts identified by two endpoint-specific profilers present in					n	OECD QSAR Toolbox v.4.2 profilers				
the OECD QSAR Toolbox						Profiler predictions are supporting information to be used together with the relevant QSAR predictions				

0


Danish (Q)SAR Database: identification of similar molecules

OCHEM: results and AD for bioconcentration factor

OCHEM: similar molecules as supporting information

with modeling environment	Wei	elcome, Dear Dr.cappelli! 🖂 My a
Home Database Models Prediction results X Prediction neighbors X		A+ a- Pr
Prediction neighbors explorer The training set compounds nearest to the selected prediction		
The predicted compound		
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	it ± 1.14 (Leverage = 0.02, estimated RMSE = 0.58) CACHED	
Nearest training set neighbours		
Similarity measure: Structural similarity V		
Similarity: 1.00 BCF = 0.64 (in Log unit) Predicted value: 1.10 (in Log un Leverage: 0.03 Gramatica. P. Page, E.	Experimental and predicted data, leverage and similarity of the most similar composition	ounds Dataset = Tr
An Update of the BCF QSAR Model Based on Th QSAR Comb. Sci. 2005; 24 (8) 953-960 Benzene, 77143-2 Molecule D: M663937 [open in browser] [prediction ne	Sources	itetko 📷 / published
1.00 • BCF = 3.28 (in Log unit) Predicted value: 3.87 (in Log unit) Leverage: 0.02		Dataset = Train
Gramatica, P. Papa, E An Update of the BCF QSAR Model Based on Theoretical Molecul QSAR Comb. Sci. 2005; 24 (8) 953-960 4,4-Dichlorobiphenyl, 2060-68-2 MoleculeID: Mt3799 [open in browser] [prediction neighbors]	Two compounds from the training set: are similar to the target 	itetko 📾 / published 📾
1.00 • BCF = 5.88 (in Log unit) Predicted value: 4.92 (in Log unit) Leverage: 0.03 Gramatica, P. Papa, E. An Update of the BCF QSAR Model Based on Theoretical Molecul	 are moderately well predicted have experimental values in line with target prediction (logBCF = 4.1 ± 1.14) 	Dataset = Train
QSAR Comb. Sci. 2005; 24 (8) 953-960 68194-17-2, 2,2',3,3',4,5,5',6-OCTACHLOROBIPHENYL MoleculeID: M44945		itetko 🖂 / published 🖂


In silico models: practical examples

Take home messages

- The *in silico* tools integrated in the gateway **provide information for expert evaluation** of the generated results and associated reliability:
 - VEGA, OCHEM and Danish QSAR database: **automated applicability domain** evaluation;
 - VEGA and OCHEM: automated extraction of similar molecules;
 - Danish QSAR database: non-automated but "customizable" similar molecules identification.
- Fore more information: recording and slides of the case studies will be published on the LIFE CONCERT REACH project website.

02 REACH: practical examples of (Q)SAR data generation and evaluation

TABLE OF CONTENTS

REACH: Documenting (Q)SAR 03 results in IUCLID for dossier preparation

(Q)SAR results in IUCLID

VEGA outcome reported according to ECHA Practical guide "How to use and report (Q)SARs" Version 3.1 – July 2016

dministrative data 🛛 🔊 None 🔊 No	one					
Endpoint @ ^ @ ^ in vitro gene mutation study in bacteria						
Type of information (Q)SAR						
Adequacy of study None Weight	of evidence OR supporting study					
Robust study summary						
Used for classification						
Used for SDS						
Study period None	According to ECHA Practical guide "it should normally be a maximum of 2"					
Reliability None	IUCLID includes several possibilities for explaining the assigned reliability.					
Rationale for reliability incl. deficiencies None	Appropriate rationale should be chosen considering both VEGA AD and reliability evaluation and expert assessment					

(Q)SAR results in IUCLID

Justification for type of information 1. SOFTWARE

- 2. MODEL (incl. version number)
- 3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
- 4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL

[[Explain how the model fulfils the OECD principles for (Q)SAR model validation. Consider attaching the QMRF and/or QPRF or providing a link]

- Defined endpoint:
- Unambiguous algorithm:
- Defined domain of applicability:
- Appropriate measures of goodness-of-fit and robustness and predictivity:
- Mechanistic interpretation:

5. APPLICABILITY DOMAIN

[Explain how the substance falls within the applicability domain of the model]

- Descriptor domain:
- Structural domain:
- Mechanistic domain:
- Similarity with analogues in the training set:
- Other considerations (as appropriate):

6. ADEQUACY OF THE RESULT

[Explain how the prediction fits the purpose of classification and labelling and/or risk assessment]

VEGA v1.2.3

Mutagenicity ISS Model (version 1.0.3)

c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl

(QMRF) can be attached and referenced here

VEGA report can be attached and used as reference. However, if expert assessment is performed, it can be described here.

procedure used to identify similar molecules in Danish QSAR database can be explained here

Expert assessment is needed

23

(Q)SAR results in IUCLID

Test material

Test material information 2,3,4-Trichlorobiphenyl | 2,3,4-trichlorobiphenyl | 1,2,3-trichloro-4-phenylbenzene | 55702-46-0

Additional test material information

None

- -

Specific details on test material used for the study SMILES: c1ccc(cc1)c2ccc(c(c2Cl)Cl)Cl Specific details on test material used for the study (confidential) A None

Test material must reflect the evaluated structure

If multiple constituents are assessed for one substance, the Practical Guide suggest to prepare separate entries

Acknowledgement:

- Katarzyna Bucior, Antje Gerloff-Elias and the QSAR team at knoell
- All partners of the LIFE CONCERT REACH project

CREDITS

