EFSA'S OPENFOODTOX 3.0: INNOVATIVE IN SILICO TOOLS AND INTEROPERABILITY WITH THE EU COMMON DATA PLATFORM ON CHEMICALS

Edoardo Carnesecchi, PhD Data Officer - iDATA Unit

OUTLINE

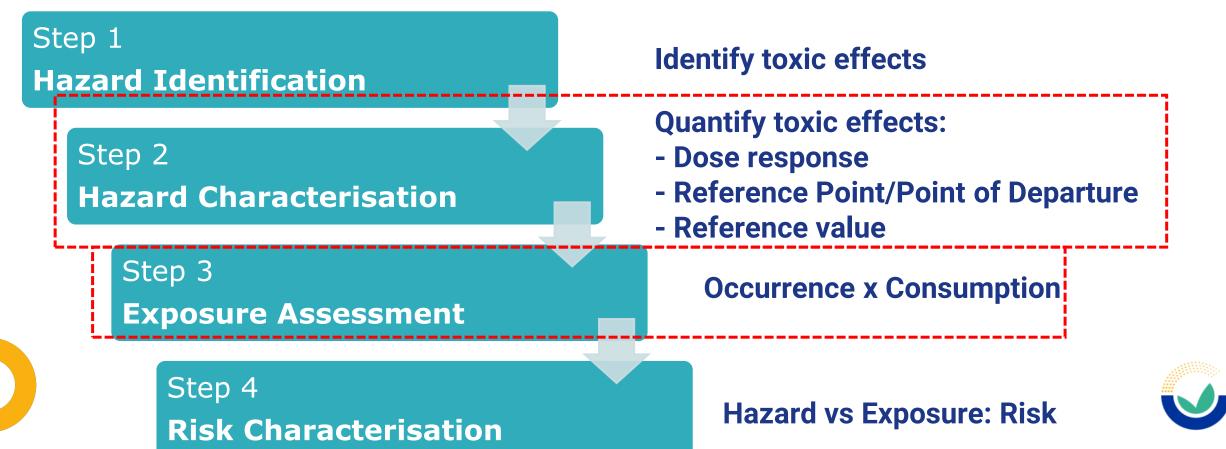
EFSA' OpenFoodTox 2.0 project

EFSA' OpenFoodTox 3.0 project

In silico tools

Conclusions

EFSA's OpenFoodTox (2.0) database



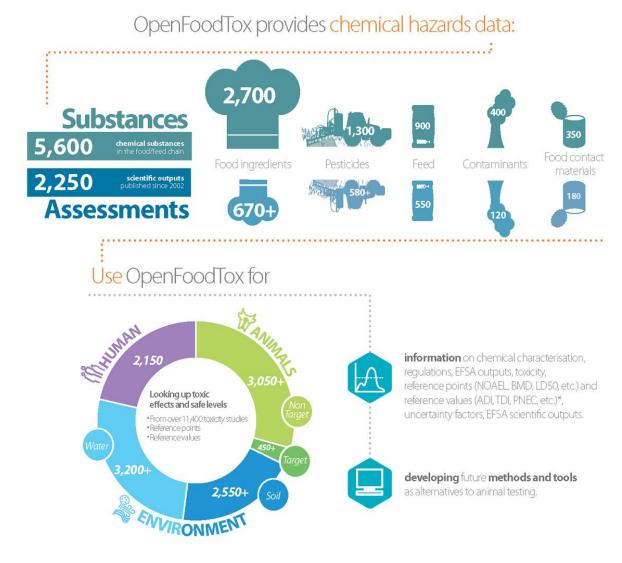
STEPS IN CHEMICAL RISK ASSESSMENT

Risk assessment: question to answer is the **problem formulation** step, then:

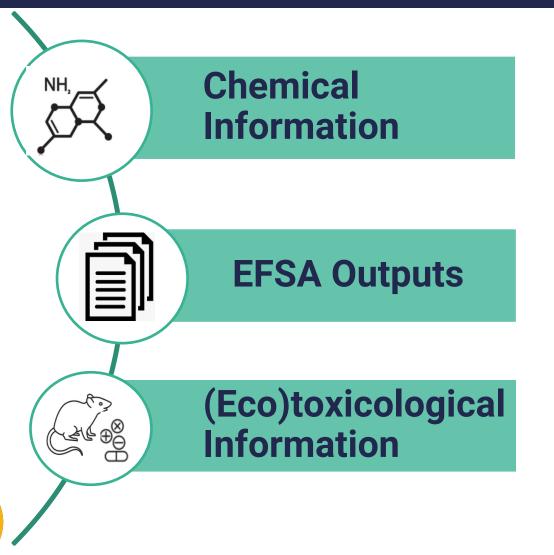
- Fit for purpose
- Use tiered approaches depending on data available, time and resources

OPENFOODTOX: EFSA'S CHEMICAL HAZARDS DATABASE

Open-source database of toxicological information since EFSA's creation (2002)


 "One-click" tool for risk assessors, risk managers and stakeholders

International data harmonisation and sharing


OECD Harmonised Templates

Developing future methods and tools as alternatives to animal testing

• Basis for developing in silico models

WHAT DOES OPENFOODTOX CONTAIN?

Substance identifiers (CAS n., IUPAC, SMILES):

- Single Substances (e.g. pesticides)
- Group of Substances (e.g. mixture/formulation)

Metadata

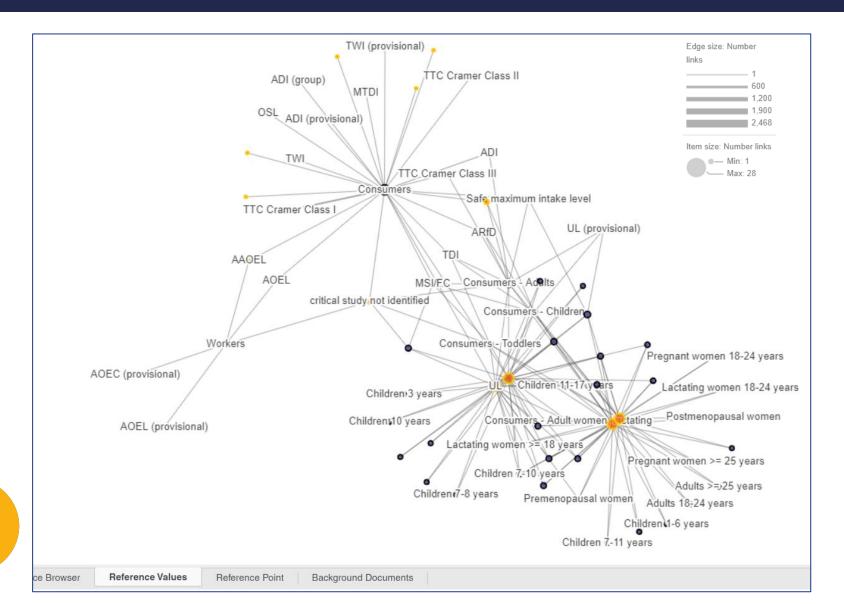
- Literature reference (title, publication date)
- link (doi) to the literature

Reference points

- No Observed Adverse Effect Level (NOAEL)
- Lethal Dose 50 (LD₅₀)

Reference Values

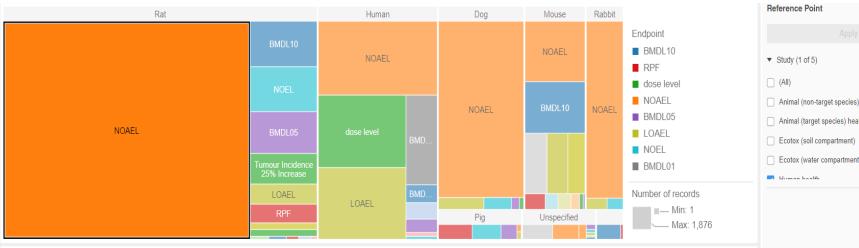
- Regulated products: e.g., ADI for pesticides
- Nutrients: e.g., DRV for vitamins and minerals
- Contaminants: TDI for acrylamide


OPENFOODTOX: MICROSTRATEGY TOOL AVAILABLE ONLINE

lease, use one search fie																		▼ FILTER	
you wish to see the alte	ernative na	mes (sy	nonyms) o	of a substa					the Substa		racterisa	tion table.		2	: s			Substance Browser	
					Subst	ance Ch	aracte	risation			-i			R.,		ynonym		Apply	
ubstance		has	c	ompone	nt			umber R	c Moie lef form lo		Sm	iles			h	2-Bis(4- /droxyphenyl)prop	ane	 Substance 	
)-3,7-Dimethyl-6-octen-1-	ol	as su	ch (-)-3,7-Dimet	thyl-6-octe	en-1-ol	75	40-51-4 2	31- C10H2	200					Bi	sphenol A			
				- P					15-				1		D	27		Q Search Substance	
-	-						E	EFSA ou	tputs									i	
Ibstance	Autho	or Pu	blished	Output Id	Title						Outpu Type	t Le	gal Basis	l	Url			1	
4-Methoxyphenyl)-4- thylpent-1-en-3-one	EFSA F	AF 11/	11/2019	3348	Revisio	ic Opinion or n 1 (FGE.215 s from subgro	Rev1): se	even a,b-uns	luation 215 aturated cinr	namyl	EFSA op	(EC (Re Imp	nmission Regula) No 1565/2000 pealed by Com. Ilementing Reg. 872/2012))	http://dx.do	i.org/10.2903/j.ef	sa.2019.5875		
4-Methoxyphenyl)pent-1 -3-one	EFSA F	AF 11/	11/2019	3348	Scientif	ic Opinion or n 1 (FGE.215	Flavourir Rev1): se	ng Group Eva	luation 215		EFSA op	inion Con	nmission Regula No 1565/2000		http://dx.do	i.org/10.2903/j.ef	sa.2019.5875	▼ Synonym	
5 one				1	ketener	from cuban	nun 212 of					, ∕Pe	pealed by Com					Q Search Synonym	
						azard Cl												!	
ıbstance	Author	Year	Output Id	t Study		est ype	Specie	es	Route	Dura (day:		Endpoint	Qualifier	Value	Unit	Effect	Toxicity		
Hyoscyamine and (-)- polamine group	EFSA CONTAM	2013	2396	Animal (target species) health	n	ot reported	Pig		Not reported	0	I	NOAEL	=	1500	µg/kg	not reported	not reported		
Hyoscyamine and (-)-	EFSA CONTAM	2013	2396	Human I		udy with	Human		Not reported	0		NOAEL	=	0.16	µg/kg bw	clinical signs	systemic	✓ CAS number	
R,2S,5R)-N-(2-	EFSA	2014	2524	Human I	health su	ubchronic	Rat		oral: feed	90		NOAEL	=	5	mg/kg	histopathology	endocrine		
				- i	На	azard Cł	aract	erisatio	n: Refe	rence	e valu	es	i					Q Search CAS number	
bstance Author			Assess	sment	Qualifie	r Value	Unit	Populat	tion				Remark	s					
-3,7- methyl-6-		[d 2180	TTC Crar Class I	mer :	=	30	µg/kg bw/day	Consumer	s							stance is expected available do not d			
								Genoto	cicity									L	
ubstance									,		Autho	•	Year	Outpu	ıt Id	Genotoxic	ity		
-3,7-Dimethyl-6-octen-1-	ol									1	EFSA CEI	-	2013	2180		Negative			
3,7-Dimethyl-6-octen-1-	ol									1	EFSA FEE	DAP	2016	2864		Not determine			
Alpha-cedrene											EFSA AFG		2008	2299		Not determine			
-Alpha-cedrene											EFSA CEI		2010	2039		Not determine			
-Alpha-cedrene											EFSA CEI		2011	2102		Not determine	ed		
-Alpha-elemol											EFSA AFO		2006	2232 2314		Negative Negative			
-Alpha-elemol																			

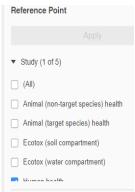
hiips://www.efsa.europa.eu/en/microstrategy/openfoodtox

MICROSTRATEGY TOOL: REFERENCE VALUES



11,400 toxicity studies

- Reference Values
- Populations



MICROSTRATEGY TOOL: REFERENCE POINTS

Reference points

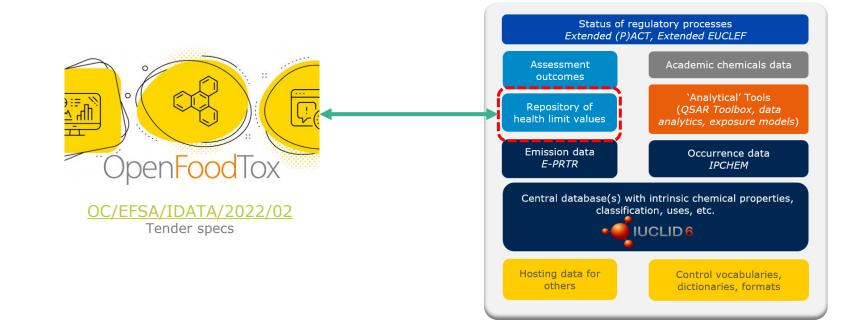
						•						
Species	Endpoint	Substance	Study	Test type	Route	Duration (days)	Qualifier	Value	Unit	Effect	Toxicity	Url
Rat	NOAEL	(1R,2S,5R)-N-(2- (Pyridine-2-yl)ethyl)-3-p- menthanecarboxamide	Human health	subchronic	oral: feed	90	=	5	mg/kg bw/day	histopathology non neoplastic	endocrine	http://c
Rat	NOAEL	(1R,2S,5R)-N- [(Ethoxycarbonyl)methyl]- p-menthane-3- carboxamide	Human health	subchronic	oral: gavage	90	=	75	mg/kg bw/day	haematology	systemic	http://c
Rat	NOAEL	(1R,2S,5R)-N- [(Ethoxycarbonyl)methyl]- p-menthane-3- carboxamide	Human health	subchronic	oral: gavage	90	=	75	mg/kg bw/day	haematology	systemic	http://c
Rat	NOAEL	(1R,3R,4S)-N-p- Benzeneacetonitrile- menthanecarboxamide	Human health	subchronic	oral: feed	90	=	100	mg/kg bw/day	organ weights	hepatotoxicity	http://c
Rat	NOAEL	(1R,3R,4S)-N-p- Benzeneacetonitrile- menthanecarboxamide	Human health	subchronic	oral: feed	90	=	100	mg/kg bw/day	organ weights	hepatotoxicity	http://c
Rat	NOAEL	(3RS,4RS;3RS,4SR)-3- chloro-4-chloromethyl-1-	Human health	chronic	Not reported	730	=	3.9	mg/kg bw/day	histopathology non neoplastic	reproductive	http://c
Substance Br	owser Refere	ence Values Reference	Point Ba	ackground Docume	ents							

2,250 Assessments

Reference Points

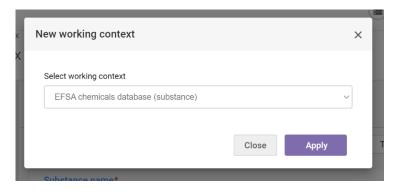
- Studies
- Species

EFSA's OpenFoodTox (3.0) database



OPENFOODTOX 3.0 - PROJECT OVERVIEW

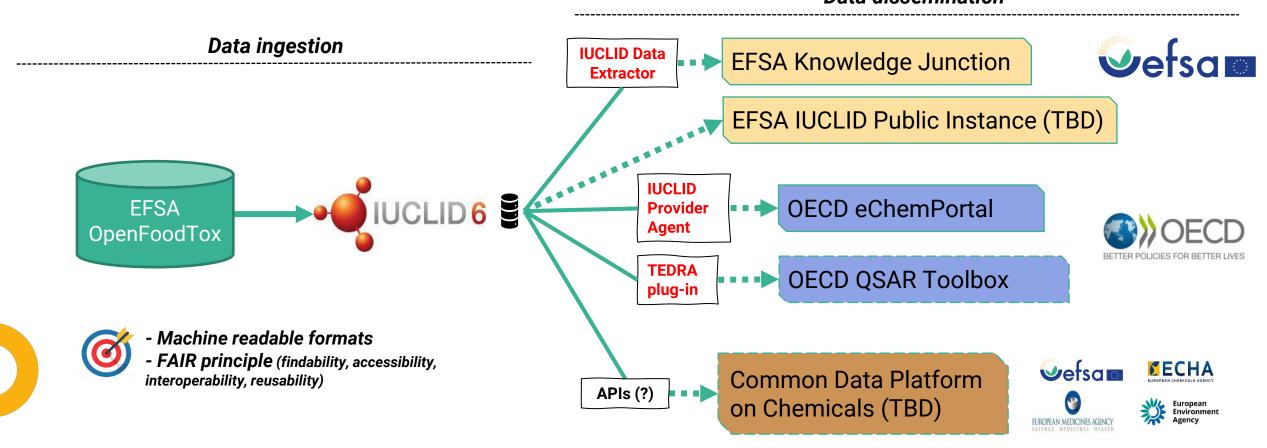
- Improving the interoperability of EFSA's OFT 3.0 database with IUCLID 6 and the EU Common Data Platform on Chemicals (1S1A);
 - Developing NAMs such as *in silico* tools to enhance OFT usability as a supporting tool for risk assessment activities.



4 May 2020

EFSA OPENFOODTOX WORKING CONTEXT IN IUCLID

1. New Working Context "EFSA Chemicals Database" available in IUCLID 7 (May 2022 release)


- 2. Substance and Mixture datasets available in EFSA Chemicals database Working Context
- **3. Key information** (*Flexible/Endpoint Summaries*) and **Detailed results** (*EndpointStudyRecords*)
- 4. Potential application/extension to other chemicals db (food additives/flavourings, botanicals).

		EFSA chemicals database (substance)	
~		TESTOpenFoodTox_Fluxapyroxad	
	~	1 Key information	7
	>	1.1 Substance identification	1
	>	1.2 Substance composition	1
	>	1.3 Metabolites	1
	>	1.4 Reference values	1
		1.5 Function, mode of action and poss resistance	ible
	>	1.6 Human health	3
	~	2 Detailed results	8
	>	2.1 Human health	6
	>	2.2 Animal health	
	>	2.3 Ecotoxicology (Soil-Terrestrial)	
	>	2.4 Ecotoxicology (Aquatic)	1
	>	2.5 Fate and behaviour in the environment	1
	>	2.6 Physical and chemical properties of active substance	of the
		Inherited templates	

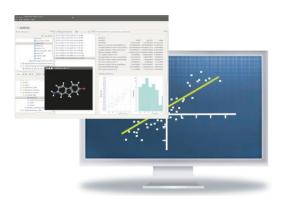
OPENFOODTOX 3.0 – OBJECTIVE 1

- 1. Update of OFT 2.0:
 - Migrating OFT 2.0 database (xlsx) to IUCLID 6
 - Data quality check of OFT 2.0

Data dissemination

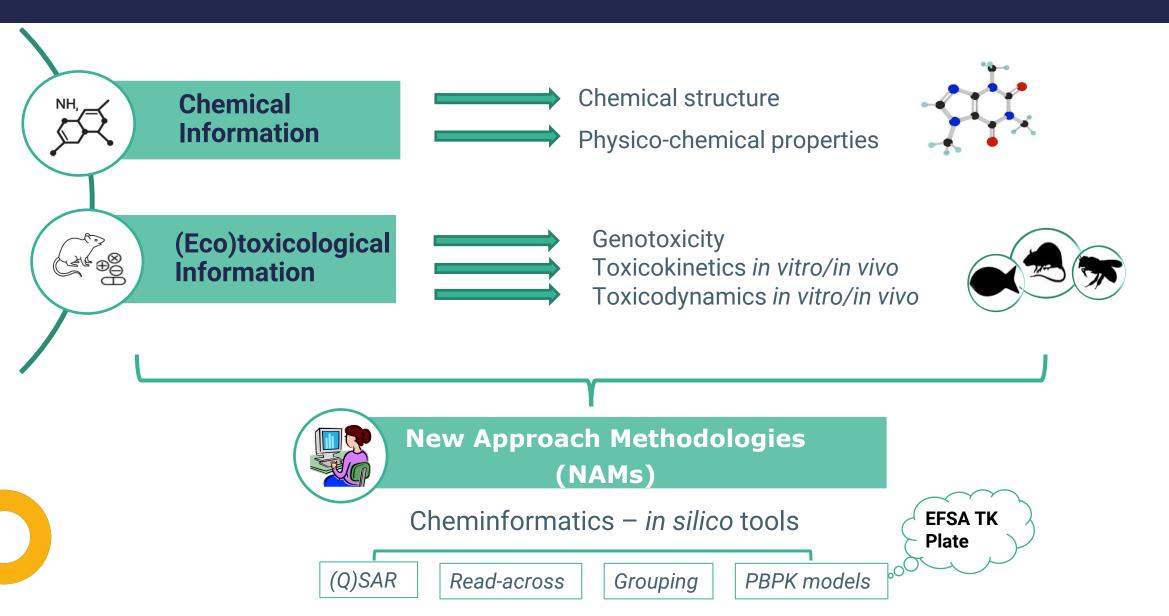
OPENFOODTOX 3.0 – OBJECTIVE 2

- 2. Further development of OFT 3.0 collection/integration of new properties into IUCLID:
 - Physico-chemical properties (OHTs 1-23);
 - Environmental Fate and Behaviour (OHTs 24 to 40 & 401) (pesticides, feed additives, contaminants)
 - Use and exposure (summary data) (OHTs 301 to 306);
 - Intermediate effects/mechanistic data (OHT 201).
 - In vitro and in vivo toxicokinetic data (HHRA; AHRA; ERA) (OHTs 58; 201)
 - In vivo critical and non-critical toxicological data (i.e., CAGs, non-critical target organs for all chemicals)



OPENFOODTOX 3.0 – OBJECTIVE 3

- 3. <u>Development of in silico models and implementation within EFSA tools:</u>
 - New *in silico* models using new properties (collected in Objective 2):
 - Predicting environmental fate, TK and in vitro toxicity in species of relevance to EFSA's for human, animal and environmental RA.
 - Integration of read-across and grouping tools according to mode of action/mechanistic understanding of substances in mammals:
 - > Considering RA of combined exposure to multiple chemicals (EFSA GD 2021).
 - VERA, ToxRead, QSAR for MoA or AOP (e.g., SA based)
 - > Publishing EFSA Knowledge Junction (Zenodo), peer reviewed literature



NAMs - in silico tools

#OpenEFSA

OPENFOODTOX AS BASIS FOR DEVELOPING NAMS

OPENFOODTOX AS BASIS FOR DEVELOPING QSAR MODELS

Journal of Hazardous Materials 423 (2022) 127236

OSAR models for soil ecotoxicity: Development and validation of models to predict reproductive toxicity of organic chemicals in the collembola Folsomia candida

Giovanna J. Lavado^{a,1}, Diego Baderna^{a,*,1}, Edoardo Carnesecchi^b, Alla P. Toropova^a Andrey A. Toropov^a, Jean Lou C.M Dorne^c, Emilio Benfenati

journal homepage: www.elsevier.com/locate/scitoter

SEVIER

Contents lists available at ScienceDirect Science of the Total Environment

Check for updates

Integrating QSAR models predicting acute contact toxicity and mode of action profiling in honey bees (A. mellifera): Data curation using open source databases, performance testing and validation

Edoardo Carnesecchi^{a,b,*,1}, Cosimo Toma^{a,b,1}, Alessandra Roncaglioni^b, Nynke Kramer^a, Emilio Benfenati^b, Jean Lou C.M. Dorne

More than 15 QSAR models developed (different species of human

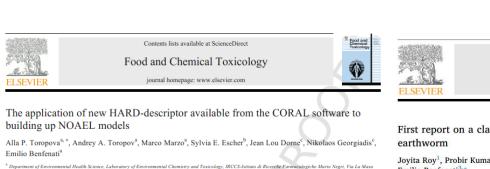
health and ecological relevance such as mice, fish, earthworms, bees)

"From animal testing to **computer testing**"

A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians

Andrey A. Toropov^{a,1}, Matteo R. Di Nicola^{b,c,0,1}, Alla P. Toropova^a, Alessandra Roncaglioni^a Edoardo Carnesecchi d.e, Nynke I. Kramer c.d, Antony J. Williams f, Manuel E. Ortiz-Santaliestra Emilio Benfenati ª, Jean-Lou C.M. Dorne

Exploring QSAR modeling of toxicity of chemicals on earthworm


Sulekha Ghosh^a, Probir Kumar Ojha^a, Edoardo Carnesecchi^{b,c}, Anna Lombardo^c, Kunal Roy^{a,*} Emilio Benfenati^C

¹Drog Theoretics and Cheminformatics Laboratory, Department of Pharmacentical Technology, Jadospar University, Kokota, 700 032, India Institute for Bick Assessment Sinnees, Urench University, PO Box 80177, S308, TD, Urench, the Netherlands Lindornier of Environmental Chemistry and Tachockgo, Papertura of Environment Intella, Istation D Kareh Farmacologiche Mario Negri RCCS, Via Mario Negri, 2. 20156. Milano. Italy

19, 20156 Milano, Italy

Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, German

⁶ Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy

First report on a classification-based QSAR model

Joyita Roy¹, Probir Kumar Ojha¹, Edoardo Carnesecchi^{2,3}, Anna Emilio Benfenati^{3,*}

¹ Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur Univ ² Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands

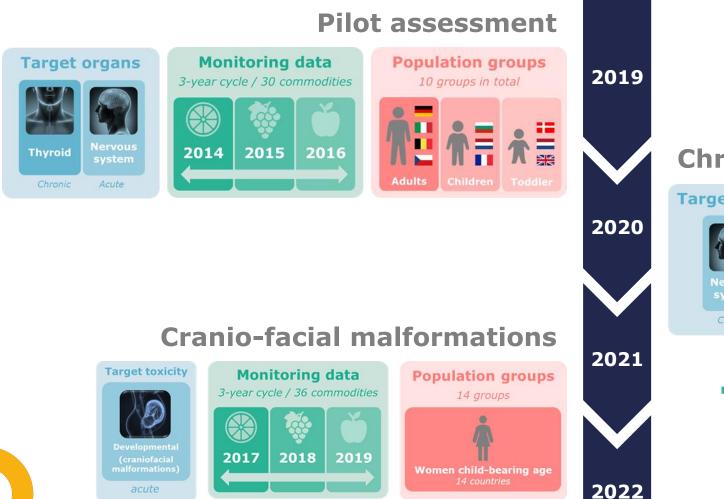
QSAR models for predicting acute toxicity of pesticides in rainbow trout

Contents lists available at ScienceDirect

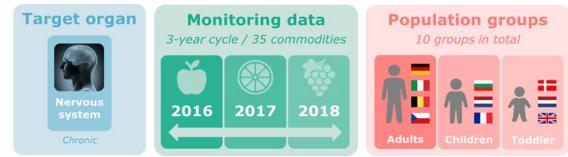
Environmental Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/etap

using the CORAL software and EFSA's OpenFoodTox database


Andrey A. Toropov^a, Alla P. Toropova^{a,*}, Marco Marzo^a, Jean Lou Dorne^b, Nikolaos Georgiadis¹ Emilio Benfenati^a

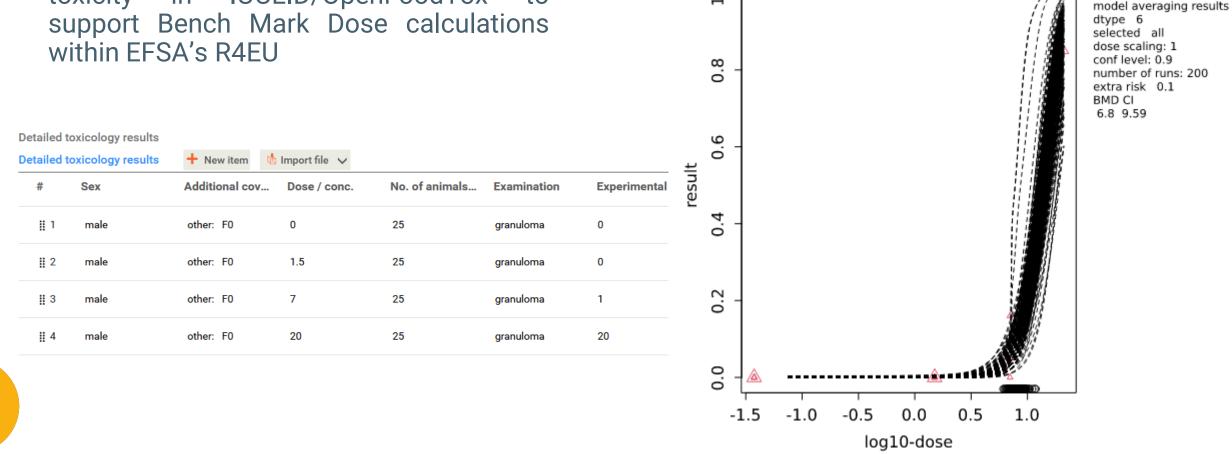
ment of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Masa 19, 20156 Milano, Italy ^b Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Ital


³ Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milano, Italy

	Contents lists available at Scie	- 二
	Journal of Hazardous	- Sec
IFR	journal homepage: www.elsevier.co	E

OPENFOODTOX 3.0 FOR CRA PESTICIDES

Chronic AChE inhibition


 In vivo critical and non-critical toxicological data (i.e., CAGs, noncritical target organs for all chemicals)

OPENFOODOTOX 3.0 - BENCH MARK DOSE CALCULATIONS

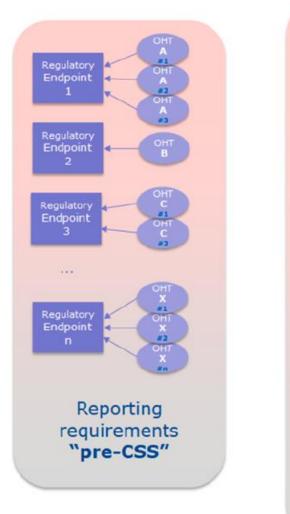
Trial of new table in Repeated dose toxicity in IUCLID/OpenFoodTox to support Bench Mark Dose calculations within EFSA's R4EU

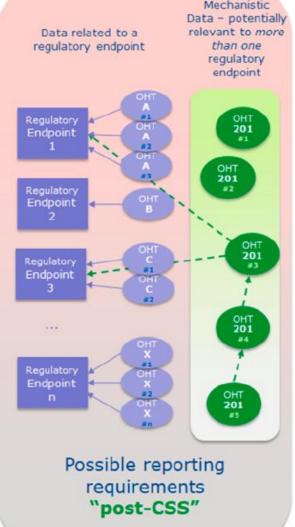
bootstrap curves based on model averaging

version: 70.0

1.0

OPENFOODTOX 3.0 TO REPORT MECHANISTIC DATA (OHT 201)


Toxicology an Pharmacology



Regulatory Toxicology and Pharmacology Volume 142, August 2023, 105426

OECD harmonised template 201: Structuring and reporting mechanistic information to foster the integration of new approach methodologies for hazard and risk assessment of chemicals

Edoardo Carnesecchi ^{a 1} Q 🖾 , Ingrid Langezaal ^b, Patience Browne ^a, Sofia Batista-Leite ^b, Ivana Campia ^b, Sandra Coecke ^b, Bertrand Dagallier ^a, Pierre Deceuninck ^b, Jean Lou CM. Dorne ^c, Jose V. Tarazona ^{c 2}, Francois Le Goff ^d, Eeva Leinala ^a, Siegfried Morath ^b, Sharon Munn ^b, Jane Richardson ^c, Alicia Paini ^{b 3}, Clemens Wittwehr ^b

EFSA-ECHA PROJECT ON REPORTING QSAR DATA IN IUCLID/OHTS AND OPENFOODTOX 3.0

- <u>IUCLID 6</u> fully implements the <u>OECD Harmonised Templates (OHTs)</u> for reporting chemical test summaries;
- QSAR data can be reported in IUCLID 6 using the QPRF; however, the <u>QPRF is provided</u> by IUCLID users as pdf attachment thus <u>limiting data extraction/analysis</u>.
- **QSAR** specific fields are NOT available in IUCLID (e.g., reliability, analogues)

Revising current OHTs structure to further **harmonise** the **reporting** of **QSAR-based data** in structured format in **IUCLID/OHTs** by:

- > mapping **QPRF** fields to **OHTs structure**
- implementing the new fields in the OHT format/IUCLID.

	A	В
1	QPRF mapping	New QPRF number
2	Administrative information	1
3	Date of QPRF	1.1
4	QPRF author and contact details	1.2
5		
6	Substance*	2
7	CAS number	2.1
8	EC number	2.2
9	Other numerical identifiers	2.3
10	Chemical name	2.4
11	Structural formula	2.5
12	Structural and composition information	2.6
13	SMILES	2.6.a
14	InChI	2.6.b
15	Other structural representation	2.6.c
16	Stereochemical features	2.6.d
17	Composition information	2.6.e
	Comments on substance information	-
19		
20	Model and software	
21	Model name	3.1.a
22	Version	3.1.b
23	Reference to QMRF	3.1.c
24	Comments on model	-
25	Software implementation	3.2.a
26	Software name	3.2.b
		3.2.c
	Software version	2.2.1
28	Software reference	3.2.d

22

CONCLUSIONS AND FUTURE PERSPECTIVES

OpenFoodTox (OFT) 2.0

 Updated version of DB available <u>open source</u> (Zenodo, Micro-strategy tool) including **new** properties (**1,240 substances** from 667 Opinions):

O ADME/PK/TK

 \circ Phys-chem

- New QSAR models and VERA tool developed using OFT data for a range of species and endpoints;
- Predicted values using 23 VEGA models for a range of pp;
- Final External Report (by contractors) by June 2023.

Maintenance, update and further development of EFSA's Chemical Hazards: OpenFoodTox 2.0

Emilio Benfenati, Alessandra Roncaglioni, Nadia Iovine, Marco Marzo, Andrey Toropov, Alla Toropova, Andrea Ciacci, Marta Lettieri, Luca Sartori, Chihae Yang, Tomasz Magdziarz, Bryan Hobocienski, Aleksandra Mostrag

CONCLUSIONS AND FUTURE PERSPECTIVES

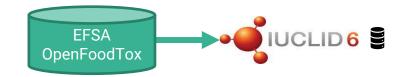
OpenFoodTox (OFT) 2.0

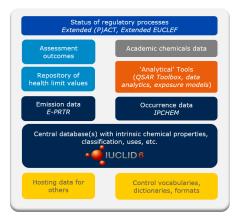
 Updated version of DB available <u>open source</u> (Zenodo, Micro-strategy tool) including **new** properties (**1,240 substances** from 667 Opinions):

O ADME/PK/TK

 \circ Phys-chem

- New QSAR models and VERA tool developed using OFT data for a range of species and endpoints;
- Predicted values using 23 VEGA models for a range of pp;
- Final External Report (by contractors) by June 2023.


Maintenance, update and further development of EFSA's Chemical Hazards: OpenFoodTox 2.0


Emilio Benfenati, Alessandra Roncaglioni, Nadia Iovine, Marco Marzo, Andrey Toropov, Alla Toropova, Andrea Ciacci, Marta Lettieri, Luca Sartori, Chihae Yang, Tomasz Magdziarz, Bryan Hobocienski, Aleksandra Mostrag

CONCLUSIONS AND FUTURE PERSPECTIVES

OpenFoodTox (OFT) 3.0

- First available version of OFT db in IUCLID 6 by Dec 2023;
- Additional EFSA's hazard datasets (e.g., food flavourings, botanicals, food enzymes) integrated into OFT;
- Interoperability of OFT with EU Common Data Platform on Chemicals (EU CDPC) and OECD IT environment (e-ChemPortal, OECD QSAR Toolbox);
- New *in silico* tools (e.g., QSARs, read-across, grouping based on AOPs) available in 2025.

STAY CONNECTED

SUBSCRIBE TO

5

0

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

LISTEN TO OUR PODCAST Science on the Menu – Spotify, Apple Podcast and YouTube

FOLLOW US ON TWITTER @efsa_eu @methods_efsa @plants_efsa @animals_efsa

FOLLOW US ON LINKEDIN Linkedin.com/company/efsa

FOLLOW US ON INSTAGRAM @one_healthenv_eu CONTACT US efsa.europe.eu/en/contact/askefsa

Edoardo.Carnesecchi@efsa.europa.eu

in

 \bowtie