Implementations of VEGA predictions in the Danish (Q)SAR Database

Eva B. Wedebye, Nikolai G. Nikolov, Henrik Tyle, Ana C.V.E. Nissen

EU LIFE CONCEERT REACH Final Workshop 19 June 2023

Outline

- DTU role in the EU LIFE Concert REACH project
- VEGA models implemented in the Danish (Q)SAR Database

DTU contributions in the LIFE Concert REACH project

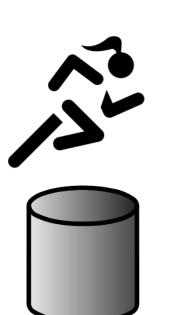
- Generate and include predictions from VEGA models in the Danish Database
- Contribute to the **CONCERT Gateway**
- **Training** in the Danish (Q)SAR Database
- Publish non-confidential QSAR **training sets** to in the Danish (Q)SAR Database
- Contribute to **dissemination** (webinars, scientific conferences, meetings)
 - Incl. organizing a **workshop** for EU authorities (Oct 2021)

Chosen VEGA models for implementation in the Danish (Q)SAR Database

- Water solubility model (IRFMN)
- Air Half-Life (IRFMN/CORAL)
- Ready Biodegradability model (IRFMN)
- BCF model (CAESAR)
- Daphnia Magna Chronic (NOEC) toxicity model (IRFMN)
- Daphnia Magna Acute (EC50) Toxicity Model (IRFMN)
- Algae Acute (EC50) Toxicity model (IRFMN)
- Sludge (EC50) Toxicity Model (ProtoQSAR/Combase)
- Sludge Classification Toxicity Model (ProtoQSAR/Combase)
- MOA Toxicity classification (EPA T.E.S.T)
- Developmental/Reproductive Toxicity library (PG)
- Hepatotoxicity Model (IRFMN)
- In vitro Micronucleus activity (IRFMN)
- Mutagenicity (Ames test) Consensus
- Mutagenicity (Ames test) model (SarPy/IRFMN) Model
- Mutagenicity (Ames test) Model (ISS)
- Mutagenicity (Ames test) Model (KNN/Read-Across)
- Mutagenicity (Ames test) Model (CEASAR)

Predictions from VEGA models in the Danish Database

- To choose the most relevant and best models to supplement the information in the Danish (Q)SAR Database we have thoroughly considered all VEGA models' documentation (QMRFs and scientific publications) according to the OECD validation principles and in dialogue with IRFMN about questions
- Predictions are implemented following the general concept / terminology of the database, i.e. abbreviated predictions **POS/NEG** for binary endpoints, **AD IN/OUT**, however we added indication of VEGA calls good (IN) / moderate (OUT) / low (OUT) for transparency reasons
- All VEGA predictions are **searchable for predictions in domain**, and can thereby in very fast manner e.g. be crossed with REACH-registered substances etc. and other searches in making combined / complex searches
- Launched today in the Danish (Q)SAR Database



https://qsar.food.dtu.dk/

- Developed and maintained by our DTU QSAR team
- Pre-generated predictions for **>650,000 mono-constituent organic substances**, including 13,406 REACH-registered substances
- >200 QSAR DTU/commercial/free models used
 - phys.chem / ADME / HH / ENV
- Documentation of models in (Q)SAR Model Reporting Format, QMRF
- Free, easy-to-use, fast and advanced searches
- Integrated with the free **OECD QSAR Toolbox**
- Danish (Q)SAR Models for detailed predictions in (Q)SAR Prediction Reporting Format, QPRF
- Both sites are **continuously being updated** with new models / substances

Statistics since release November 2015

Database

>10k unique IPs made >200k 'real' searches

https://qsar.food.dtu.dk/

- Developed and maintained by our DTU QSAR team
- Pre-generated predictions for >650,000 mono-constituent organic

substa

• >200

- ph

ELSEVIER

Docum

• Free, e

Integra

Danish Format

Both sit

Environmental Toxicology and Pharmacology 98 (2023) 104069

Contents lists available at ScienceDirect

Environmental Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/etap

A method for *in vitro* data and structure curation to optimize for QSAR modelling of minimum absolute potency levels and a comparative use case

Nikolai G. Nikolov¹, Ana C.V.E. Nissen, Eva B. Wedebye^{*,1}

- Transparent principles and reporting of data curation
- Transparency also for validation for external predictivity (e.g. no automatic exclusion of outliers, not using validation to choose model etc.)

Why a predictions database

- Quick look-up of already generated predictions at 'top level' from many QSAR models
- Profiling of single substances: Integrating predictions to give a bigger picture and possibly reduce overall uncertainty
- Screening across all contained predictions/structures: Advanced search combinations for screening purposes

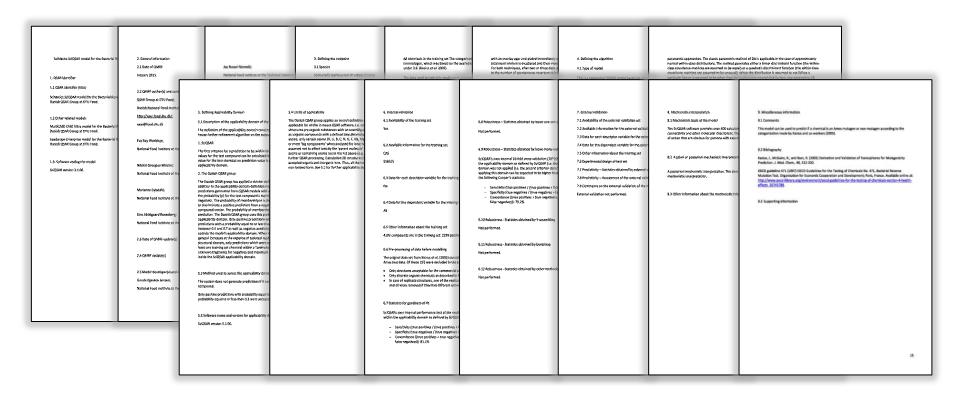
• I.e. all included VEGA models now part of this

 Building read-across cases: Find structural analogues with the similarity function and use predictions and training set data - and/or find Tox21, PubChem etc. analogs with exp. data - to contribute to read-across justification

	50-06-6	C1(=0)C(c2cccc2)(CC)C(=0)NC(=0)N1	1.3301	232.2258	3.0000	
2.	50-28-2	c12c(C3C(C4C(C)(C(0)CC4)CC3)CC1)ccc(0)c2	3.9429	272.3676	0.0000	
3.	50-29-3	C(CI)(CI)(CI)C(c1 ccc(CI)cc1)c1 ccc(CI)cc1 6.7		354.4761	0.0000	0.0030
4.	50-32-8	c12c3c4c(c5c(cc4ccc3ccc1)cccc5)cc2	6.1090	252.2948	0.0000	
5.	50-48-6	c12C(={c}CCCN(C)C)c3c(cccc3)CCc1cccc2 4.		277.3887	1.0000	
6.	51-03-6	c12c(cc(COCCOCCOCCCC)c(CCC)c1)OCO2	4.2907	338.4220	0.0000	3.0000
7.	51-21-8	Fc1c(nH)c(=0)(nH)c1=0				
8.	51-28-5	c1(0)c(N(=0)=0)cc(N(=0)=0)cc1	1.7259	184.1006	4.0000	4.1000
9.	52-24-4	C1CN1P(=S)(N1CC1)N1CC1	0.6068	189.2138	1.0000	
10.	52-51-7	C(Br)(CO)(CO)N(=0)=0	-0.6408	199.9904	2.0000	0.5700
11.	52-68-6	C(CI)(CI)(CI)C(O)P(=0)(OC)OC	-0.2770	257.4322	1.0000	0.0010
12.	54-11-5	c1(C2CCCN2C)cccnc1	0.9981	162.2246	0.0000	
13.	54-85-3	C(=0)(c1ccncc1)NN	-0.8136	137.1353	1.0000	
14.	55-38-9	c1(SC)c(C)cc(OP(=S)(OC)OC)cc1	4.0791	278.3175	1.0000	0.0052
15.	55-63-0	C(CON(=0)=0)(CON(=0)=0)ON(=0)=0	1.5126	227.0815	6.0000	32.0000
16.	56-23-5	ද(ප)(ප)(ප)	2.4421	153.8220	0.0000	35.0000
17.	56-38-2	c1(0P(=\$)(0CC)0CC)ccc(N(=0)=0)cc1	3.7309	291.2506	3.0000	0.0025
18.	56-53-1	c1(C(={c}C(c2ccc(0)cc2)CC)CC)ccc(0)cc1	5.6406	268.3360	1.0000	
19.	56-55-3	c12c(c3c(cc4c(cccc4)c3)cc1)cccc2	5.5210	228.2748	0.0000	
20.	56-75-7	c1(C(0)C(C0)NC(=0)C(Cl)Cl)ccc(N(=0)=0)cc1	0.9160	323.1198	3.0000	
21.	57-62-5	C(N)(=0)C1C(=0)C2(0)C(0)=C3C(=0)c4c(C(C)(0)C3C0	-0.6841	478.8607	5.0000	

(Q)SAR software/models

Commercial and free software/models with use / publication conditions from:



Validation and documentation

 QSAR Model Reporting Formats (QMRFs) for ~140 + 18 VEGA models in the Danish (Q)SAR Database, now also linked in the EU LIFE CONCERT REACH Gateway

Danish (Q)SAR Database, https://qsar.food.dtu.dk

(Q)SAR predicted profile

Date: 18-06-2023

Structure (as used for QSAR prediction):

SMILES (used for QSAR prediction): c1(Nc2ccc(O)cc2)ccc(N(CCCI)CCCI)cc1

ID

Registry Number	63979-55-5	PubChem CID	
REACH EC Number (pre-registration, by 2013)		REACH EC Number (registration, 2019 or 2022)	
REACH registration (2022)		REACH registration cumulated minimum annual tonnage (2022)	
EU CLP Harmonized Classification*		DK-EPA / DTU QSAR-based CLP Advisory Classification	
EU Biocide active substances		EU Pesticide active substances	
EU EFSA Botanical substances		US TSCA (Oct. 2021)	
Tox21 (2019)		ToxCast (Oct. 2021)	
Molecular Formula	C16 H18 CL2 N2 O1	Molecular weight (g/mole) 325.24	
Chemical Name	Diphenylamine, 4'-(bis(2"-chloroethyl)amino)-4-hydroxy-		

(Annex VI to CLP up to and including the 9th ATP, and including Nordic Council of Minister SPIN list for group entries)

Melting point, Boiling point and Vapour pressure

181.68	Melting Point Experimental (deg C)	
447.03	Boiling Point Experimental (deg C)	
	Vapour Pressure Experimental (atm)	
2.29E-009	Vapour Pressure Experimental (mm Hg)	
3.053E-007	Vapour pressure Subcooled Liquid (Pa)	1.31E-005
	447.03 2.29E-009	181.68 (deg C) 447.03 Boiling Point Experimental (deg C) Vapour Pressure Experimental (atm) 2.29E-009 Vapour Pressure Experimental (mm Hg) Vapour pressure Experimental (mm Hg)

EPI MPBPVP models

Henry's Law Constant

HLC Bond Method (atm-m3/mole)	3.8E-013	HLC Group Method (atm-m3/mole)	
HLC Via VP/WSol (atm-m3/mole)	1.113E-010	HLC Via VP/WSol (Pa-m3/mole)	1.128E-005
Henrys Law Const. Exp db (Pa-m3/mole)		Henrys Law Const. Exp db (atm-m3/mole)	

EPI HENRYWIN models

Water Solubility

Water solubility from Kow (mg/L)	8.805	Water solubility from Fragments (mg/L)	4.4439
Water solubility Exp (mg/L)		Water solubility Exp Ref	

EPI WATERNT model

Vater solubility v1.0.1 4.45 mod_OUT

Hydrolysis

Hydrolysis Ka half-life pH 7	Hydrolysis Kb half-life pH 7	
Hydrolysis Ka half-life pH 8	Hydrolysis Kb half-life pH 8	

EPI HYDROWIN model

2

pKa

pKa Acid	10.4
- Standard deviation (±)	0.8
pKa Base	3.5
- Standard deviation (±)	0.6

ACDLabs model

pKa estimate 999: no acidic moiety found. pKa estimate -999: no basic moiety found.

Partition coefficients

	pH 1	4	5	6	7	8	9	
LogD	1.74	3.86	3.97	3.99	3.99	3.99	3.97	

Minimum LogD in the pH interval 4-9	3.86	Maximum LogD in the pH interval 4-9	3.99

ACDLabs models

LogD: Log octanol-water partition coefficient, which for ionizable compounds varies with the pH-dependent amounts of neutral and ionized species

Log Koa 14.319 Log Kaw	-10.809
------------------------	---------

EPI KOAWIN models

Koa: octanol-air partition coefficient. Kaw: air-water partition coefficient.

Log Kow	3.51	
Log Kow Exp		Log Kow Exp Ref

EPI WSKOW model

LogKow: log octanol-water partition coefficient

Kp (m3/ug) Mackay-based	0.23	Kp (m3/ug) Koa-based	51.2
Phi Junge-Pankow-based	0.892	Phi Mackay-based	0.948
Phi Koa-based	1		

EPI AEROWIN models

Kp: particle-gas partition coefficient. Phi: fraction of substance sorbed to atmospheric particulates

Koc from MCI (L/kg)	23040	Log Koc from MCI	4.3624
Koc from Kow (L/kg)	884.4	Log Koc from Kow	2.9466

EPI KOCWIN models

Koc: soil adsorption coefficient of organic compounds. Kow: octanol-water partition coefficient. MCI: first order Molecular Connectivity Index

Level III Fugacity Environmental Partitioning, emission to air, water and soil

	Air	Water	Soil	Sediment
Mass Amount (%)	1.92E-005	7.02	80.7	12.3
Half-Life (hr)	1.24	1440	2880	13000
Emissions (kg/hr)	1000	1000	1000	0

EPI Level III Fugacity Model

Persistence time (hr)	3250
Persistence time (days)	135.4167

EPI Level III Fugacity Model

Level III Fugacity Environmental Partitioning, emission only to water

	Air	Water	Soil	Sediment
Mass Amount (%)	2.56E-013	36.3	5.09E-007	63.7
Half-Life (hr)	1.24	1440	2880	13000
Emissions (kg/hr)	0	1000	0	0

EPI Level III Fugacity Model

Persistence time (hr)	1710
Persistence time (days)	71.25

EPI Level III Fugacity Model

Air Half-Life

	Exp	Prediction	Domain
Air Half-Life (CORAL) v1.0.1 (hr)		0.3282	low_OUT

VEGA model

Sewage Treatment Plant (STP) overall chemical mass balance using 10,000 hr

	Total removal	Biodegradation	Sludge Adsorption	Volatilization
(%)	13.26	0.19	13.08	0

EPI STPWIN model

Atmospheric oxidation (25 deg C)

	ОН	Ozone
Half-Life (d)	0.0516	0
Half-Life (hr)	0.619	
Overall Rate Const. (OH: E-12 cm3/molecule-sec and OZ: E-17 cm3/molecule-sec)	207.2672	

EPI AOPWIN models

Biodegradation

Biowin1 (linear model) Probability of Rapid Biodegradation	0.0467
Biowin2 (non-linear model) Probability of Rapid Biodegradation	0.0002
Biowin3 Expert Survey Ultimate Biodegradation	1.8007
Biowin3 Expert Survey Ultimate Timeframe	months
Biowin4 Expert Survey Primary Biodegradation	2.8206
Biowin4 Exp. Survey Primary Timeframe	weeks
Biowin5 (MITI linear model) Biodegradation Probability	-0.1682
Biowin6 (MITI non-linear model) Biodegradation Probability	0.0009
Biowin7 (Anaerobic Linear) Biodegradation Probability	-1.1247
Petroleum Hydrocarbon Biodegradation Half-Life (days)	

EPI BIOWIN models

SkinBiowin1 and Biowin2: ≥0.5: "Rapid" <0.5: "Slow"

Biowin3 and Biowin4: 5 ~ hours; 4 ~ days; 3 ~ weeks; 2 ~ months; 1 ~ years. Biowin5 and Biowin6: ≥0.5: "Readily", <0.5: "Not readily".

Biowin7: ≥0.5: "Fast", <0.5: "Slow"

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Not Ready Biodegradability		POS_IN	POS_IN	POS_IN	NEG_OUT

DTU-developed models

POS=Not Ready

Not Ready Biodegradability v1.0.10	POS_good_IN
VEGA model	
POS=Not Ready	

Bioaccumulation

BCF (L/kg wet-wt)	95.83
Log BCF (L/kg wet-wt)	1.982
Whole Body Primary Biotransformation Fish Half-Life (days)	0.1804
BCF Arnot-Gobas (upper trophic) Including Biotransformation (L/kg wet-wt)	62.25
BCF Arnot-Gobas (upper trophic) Zero Biotransformation (L/kg wet-wt)	341.5
BAF Arnot-Gobas (upper trophic) Including Biotransformation (L/kg wet-wt)	62.25
BAF Arnot-Gobas (upper trophic) Zero Biotransformation (L/kg wet-wt)	485.2

EPI BCFBAF models

BCF: Bioconcentration factor, BAF: Bioaccumulation factor

	Exp	Prediction	Domain
Log BCF (CAESAR) v2.1.15 (L/kg)		2.56	mod_OUT
VEGA model			

Aquatic toxicity

	Exp	Battery	Leadscope	SciQSAR
Fathead minnow 96h LC50 (mg/L)			0.6731269	0.7366208
Domain		OUT	OUT	OUT
Daphnia magna 48h EC50 (mg/L)		0.4565404	0.3870346	0.5260463
Domain		IN	IN	IN
Pseudokirchneriella s. 72h EC50 (mg/L)			0.4397876	0.04881282
Domain		OUT	OUT	OUT

DTU-developed models

	Exp	Prediction	Domain
Daphnia magna 48h EC50 v1.0.1 (mg/L)		0.0489	mod_OUT
Daphnia magna 21d NOEC v1.0.1 (mg/L)		0.309	low_OUT

Algae Acute 72h ErC50 v1.0.1 (mg/L)	0.362	low_OUT
Sludge Classification, 3h EC50 < 100 mg/L v1.0.1*	NEG_low_OUT	See prediction
Sludge 3h EC50 v1.0.1 (mg/L)	33.45	low_OUT

VEGA models

^{*} The quantitative model should only be applied when the Sludge classification model is POS IN

MOA Toxicity classification (EPA T.E.S.T) v1.0.2	
- predicted Mode of action	Narcosis
- predicted wode of action	Naicosis
- Domain	good_IN
- Exp, if part of training set	
VEGA model	
Qualitative estimation of MOA for Fathead minnow	96h

	Fish 96h	Daphnid 48h	Green Algae 96h
LC50 (Fish) or EC50 (Daphnid and Algae) for Most Toxic Class (mg/L)	4.035	2.378	9.446
Max. Log Kow for Most Toxic Class	7	7	7
Most Toxic Class	Phenols	Phenols	Phenols
Note			Chemical may not be soluble enough

EPI ECOSAR models

ECOSAR Classes: Phenols

Oral absorption

Lipinski's Rule-of-five score (bioavailability)	0
Absorption from gastrointestinal tract for 1 mg dose (%)	100
Absorption from gastrointestinal tract for 1000 mg dose (%)	50

Leadscope model on Lipinski's Rule-of-five. Equation from literature on GI abs.

Lipinski scores of 0 or 1: The substance may be bioavailable. Lipinski scores of 2, 3 or 4: The substance may not be bioavailable.

Skin absorption

EPI DERMWIN model

Brain/blood Distribution

Log brain/blood partition coefficient	0.411
---------------------------------------	-------

Equation from literature

Partitioning between the two tissues at equilibrium. >1: high, >0 to <1: medium, >-1 to <0, fair, <-1: low.

Metabolism

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
CYP2C9 substrates (Human clinical data)		NEG_IN	NEG_IN	NEG_IN	NEG_IN
CYP2D6 substrates (Human clinical data)		INC_OUT	POS_IN	INC_OUT	NEG_IN

DTU-developed models

Acute toxicity in Rodents

	LD50 (mg/kg/d)	Reliability Index
Rat Oral	45.29	0.46
Rat Intraperitoneal	15.89	0.33
Mouse Oral	57.58	0.55
Mouse Intraperitoneal	84.67	0.32
Mouse Intravenous	12.12	0.27
Mouse Subcutaneous	7.33	0.46

ACDLabs models

Reliability index: <0.3 = Not reliable prediction quality; 0.3-0.5 = borderline prediction quality; 0.5-0.75 = moderate prediction quality; >0.75 = high prediction quality.

Effects in Humans

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
MRDD in Humans ≤ 2.69 mg/kg-bw/d		POS_IN	POS_OUT	POS_IN	POS_IN

DTU-developed models

Model based on data on pharmaceuticals. Maximum recommended daily dose in pharmaceutical clinical trials employing primarily oral route of exposure and daily treatments, usually for 3-12 months.

	Exp	Prediction_Domain
Hepatotoxicity v1.0.1		POS_mod_OUT
VEGA model		

Profiler-type of predictions to be used as supporting information together with relevant QSAR predictions.

Irritation and Sensitization

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Severe Skin Irritation in Rabbit		POS_IN	POS_IN	POS_IN	NEG_IN
Skin sensitisation GHS/CLP at least Cat. 1, LLNA-based (open data only)				POS_IN	
Skin sensitisation GHS/CLP at least Cat. 1, LLNA-based (open data and REACH-registrations)	N/A			POS_IN	
Skin sensitisation GHS/CLP at least Cat. 1, LLNA-based, only negative predictions (open data only)				N/A	
Skin sensitisation GHS/CLP Cat. 1A, LLNA-based (open data only)				POS_IN	
Skin sensitisation GHS/CLP Cat. 1A, LLNA-based (open data and REACH-registrations)	N/A			POS_IN	
Skin sensitisation GHS/CLP Cat. 1A, LLNA-based, only positive predictions (open data and REACH-registrations)	N/A			POS_IN	
Allergic Contact Dermatitis in Guinea Pig and Human*	N/A	POS_IN	POS_IN	POS_IN	POS_IN
Respiratory Sensitisation in Humans		INC_OUT	INC_OUT	POS_OUT	NEG_OUT
DTILL I I II					

DTU-developed models

^{*}Based on commercial training set

Protein binding by OASIS, alerts in:	
- parent only	Alkyl halides
- metabolites from skin metabolism simulator only	Aldehydes; Alkyl halides; alpha-Activated haloalkanes; Mustard compounds; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinones, Naphthoquinone(s)/imines
- metabolites from auto-oxidation simulator only	Alkyl halides; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinones, Naphthoquinone(s)/imines
Protein binding by OECD, alerts in:	
- parent only	Mustards
- metabolites from skin metabolism simulator only	alpha-Halocarbonyls; Mono-carbonyls; Mustards; Polarised alkene - ketones; Quinone-imine
- metabolites from auto-oxidation simulator only	Mustards; Polarised alkene - ketones; Quinone-imine
Protein binding potency Cys (DRPA 13%), alerts in:	
- parent only	Out of mechanistic domain

- metabolites from skin metabolism simulator only	DPRA above 21% (DPRA 13%) >> Non-Conjugated monoaldehydes (reactive); DPRA above 21% (DPRA 13%) >> p-Phenylenediamine derivatives
- metabolites from auto-oxidation simulator only	DPRA above 21% (DPRA 13%) >> p-Phenylenediamine derivatives
Protein binding potency Lys (DRPA 13%), alerts in:	
- parent only	Out of mechanistic domain
- metabolites from skin metabolism simulator only	DPRA above 21% (DPRA 13%) >> Aminophenol derivatives (reactive); DPRA less than 9% (DPRA 13%) >> Non-alpha,beta-conjugated monoaldehydes (non reactive)
- metabolites from auto-oxidation simulator only	DPRA above 21% (DPRA 13%) >> Aminophenol derivatives (reactive)
Keratinocyte gene expression, alerts in:	
- parent only	Very high gene expression >> Substituted para- and ortho-phenylenediamines, aminophenols and benzenediols
- metabolites from skin metabolism simulator only	High gene expression >> Non-conjugated aldehydes and dialdehydes; Moderate gene expression >> Fragrance aldehydes; Very high gene expression >> alpha, beta-Unsaturated carbonyl compounds; Very high gene expression >> Substituted para- and ortho-phenylenediamines, aminophenols and benzenediols
- metabolites from auto-oxidation simulator only	Very high gene expression >> alpha, beta-Unsaturated carbonyl compounds
Protein binding potency GSH, alerts in:	
- parent only	Not possible to classify according to these rules (GSH)

OECD QSAR Toolbox v.4.1 profilers

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

Endocrine and Molecular Endpoints

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Estrogen Receptor α Binding, Full training set (Human <i>in vitro</i>)		INC_OUT	NEG_IN	INC_OUT	POS_IN
Estrogen Receptor α Binding, Balanced Training Set (Human <i>in vitro</i>)		POS_IN	POS_IN	POS_IN	NEG_IN
Estrogen Receptor α Activation (Human <i>in vitro</i>)		POS_OUT	INC_OUT	INC_OUT	POS_IN
Estrogen Receptor Activation, CERAPP data (in vitro)		N/A	N/A	NEG_IN	N/A
Androgen Receptor Inhibition (Human in vitro)		INC_OUT	INC_OUT	NEG_IN	POS_IN
Androgen Receptor Binding, CoMPARA data (in vitro)		N/A	N/A	POS_OUT	N/A
Androgen Receptor Inhibition, CoMPARA data (in vitro)		N/A	N/A	POS_IN	N/A

10

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Androgen Receptor Activation, CoMPARA data (in vitro)		N/A	N/A	NEG_IN	N/A
Thyroperoxidase (TPO) inhibition QSAR1 (Rat <i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Thyroperoxidase (TPO) inhibition QSAR2 (Rat <i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Sodium/iodide symporter (NIS), higher sensitivity		N/A	N/A	POS_IN	N/A
Sodium/iodide symporter (NIS), higher specificity		N/A	N/A	INC_OUT	N/A
Thyroid Receptor α Binding (Human in vit	tro)				
- mg/L			52024.02	201.7734	69.71142
- μΜ			159955.8	620.3831	214.3384
- Positive for IC ₅₀ \leq 10 μ M					
- Positive for IC ₅₀ ≤ 100 μM					
- Domain		OUT	OUT	OUT	OUT
Thyroid Receptor β Binding (Human in vit	tro)				
- mg/L			10524.57	6.459723	628.4979
- μM			32359.38	19.86141	1932.413
- Positive for IC ₅₀ \leq 10 μ M					
- Positive for IC ₅₀ ≤ 100 μM					
- Domain		OUT	OUT	OUT	OUT
Arylhydrocarbon (AhR) Activation – Rational final model (Human <i>in vitro</i>)		N/A	N/A	NEG_IN	N/A
Arylhydrocarbon (AhR) Activation – Random final model (Human <i>in vitro</i>)		N/A	N/A	NEG_OUT	N/A
Pregnane X Receptor (PXR) Binding (Human <i>in vitro</i>)	N/A	INC_OUT	POS_OUT	POS_OUT	INC_OUT
Pregnane X Receptor (PXR) Binding (Human <i>in vitro</i>) NEW		N/A	N/A	NEG_IN	N/A
Pregnane X Receptor (PXR) Activation (Human <i>in vitro</i>)		N/A	N/A	INC_OUT	N/A
Pregnane X Receptor (PXR) Activation (Rat <i>in vitro</i>)		N/A	N/A	NEG_IN	N/A
CYP3A4 Induction (Human in vitro)		N/A	N/A	NEG_OUT	N/A
Constitutive Androstane Receptor (CAR) Activation at max. 20 µM (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Constitutive Androstane Receptor (CAR) Activation at max. 50 μM (<i>in vitro</i>)		N/A	N/A	POS_IN	N/A
Constitutive Androstane Receptor (CAR) Inhibition at max. 20 µM (<i>in vitro</i>)		N/A	N/A	NEG_IN	N/A
Constitutive Androstane Receptor		N/A	N/A	POS_IN	N/A

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
(CAR) Inhibition at max. 50 μM (in vitro)					

DTU-developed models

Estrogen Receptor Binding, alerts in:	
- parent only	Strong binder, OH group
- metabolites from <i>in vivo</i> Rat metabolism simulator only	Strong binder, NH2 group; Strong binder, OH group; Moderate binder, NH2 group; Weak binder, OH group
- metabolites from Rat liver S9 metabolism simulator only	Strong binder, OH group
rtER Expert System - USEPA, alerts in:	
- parent only	No alert found
- metabolites from <i>in vivo</i> Rat metabolism simulator only	No alert found
- metabolites from Rat liver S9 metabolism simulator only	No alert found
OECD QSAR Toolbox v.4.2 profilers	

Developmental Toxicity

	Battery	CASE Ultra	Leadscope	SciQSAR
Teratogenic Potential in Humans	POS_IN	POS_IN	POS_IN	NEG_IN

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

DTU-developed models based on commercial training set

. Ехр	0	Prediction_Domain
Developmental/Reproductive Toxicity library (PG) v1.1.2		NEG_low_OUT
VEGA model		
Profiler-type of predictions to be used as	supporting information toge	ether with relevant QSAR predictions

Genotoxicity - Structural Alerts for DNA Reactivity

	Battery	CASE Ultra	Leadscope	SciQSAR
Ashby Structural Alerts	POS_IN	POS_IN	POS_IN	INC_OUT

DTU-developed models based on commercial training set

DNA binding by OASIS, alerts in:

- parent only	Haloalkanes Containing Heteroatom; Nitrogen and Sulfur Mustards
DNA binding by OECD, alerts in:	
- parent only	Mustards; Tertiary aromatic amine

OECD QSAR Toolbox v.4.2 profilers

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

In vitro Genotoxicity - Bacterial Reverse Mutation Test (Ames test)

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Ames test in S. typhimurium (in vitro)		POS_IN	POS_IN	POS_IN	POS_IN
*Direct Acting Mutagens (without S9)	N/A	NEG_OUT	POS_OUT	NEG_IN	NEG_OUT
*Base-Pair Ames Mutagens	N/A	INC_OUT	INC_OUT	NEG_IN	POS_IN
*Frameshift Ames Mutagens	N/A	POS_IN	NEG_IN	POS_IN	POS_IN
*Potent Ames Mutagens, Reversions ≥ 10 Times Controls	N/A	POS_IN	POS_IN	POS_IN	POS_IN

DTU-developed models

^{*} The four models (Direct Acting mutagens (without S9), Base-Pair Ames Mutagens, Frameshift Ames Mutagens, Potent Ames Mutagens) should not be used to determine if substances are Ames mutagens, but can be used for indication of mechanism or potency for cases where the main Ames model (Ames test in S. typhimurium (*in vitro*)) is POS_IN.

	Consensus	Mut. / Non-mut. Scores	Used models
Ames test Consensus	POS	0.675 / 0	4

VEGA model

Mutagenicity (Ames) consensus model version 1.0.4 contained in VEGA version 1.4.3 with calculation core version 1.3.14

	Exp	Prediction
Ames test (ISS) v1.0.3		POS_good_IN
Ames test (CAESAR) - v2.1.13		POS_mod_OUT
Ames test (SarPy) v1.0.8		POS_mod_OUT
Ames test (KNN/Read-Across) v1.0.1		POS_mod_OUT
VEGA models		

DNA alerts for AMES by OASIS, alerts in:			
- parent only	No alert found		
In vitro mutagenicity (Ames test) alerts by ISS, alerts in:			

13

- parent only	S or N mustard
---------------	----------------

OECD QSAR Toolbox v.4.2 profilers

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

Other in vitro Genotoxicity Endpoints

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells*	N/A	NEG_OUT	INC_OUT	INC_OUT	NEG_IN
Chromosome Aberrations in Chinese Hamster Lung (CHL) Cells		POS_OUT	POS_OUT	POS_IN	INC_OUT
Mutations in Thymidine Kinase Locus in Mouse Lymphoma Cells		POS_IN	POS_IN	POS_IN	POS_IN
Mutations in HGPRT Locus in Chinese Hamster Ovary (CHO) Cells		POS_OUT	POS_OUT	POS_IN	NEG_OUT
Unscheduled DNA Synthesis (UDS) in Rat Hepatocytes		NEG_IN	NEG_IN	NEG_IN	NEG_IN
Syrian Hamster Embryo (SHE) Cell Transformation		POS_OUT	POS_OUT	INC_OUT	POS_IN

DTU-developed models

HGPRT: Hypoxanthine-guanine phosphoribosyltransferase

	Exp	Prediction_Domain
Micronucleus (VERMEER) v1.0.1		POS_mod_OUT
VEGA model		

DNA alerts for CA and MNT by O/	ASIS, alerts in:	
- parent only	No alert found	
Protein binding alerts for Chromosomal aberration by OASIS, alerts in:		
- parent only	Nitrogen Mustard	
OECD QSAR Toolbox v.4.2 profilers CA: Chromosomal aberration, MNT: Micronucleus test		

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

In vivo Genotoxicity Endpoints

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Sex-Linked Recessive Lethal (SLRL) Test in Drosophila m.		POS_IN	POS_IN	POS_IN	POS_IN

^{*}Based on commercial training set

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Micronucleus Test in Mouse Erythrocytes		POS_IN	POS_OUT	POS_IN	POS_IN
Dominant Lethal Mutations in Rodents		POS_IN	POS_IN	POS_IN	POS_IN
Sister Chromatid Exchange in Mouse Bone Marrow Cells		POS_IN	INC_OUT	POS_IN	POS_IN
Comet Assay in Mouse		POS_IN	POS_IN	NEG_OUT	POS_IN

DTU-developed models

In vivo mutagenicity (Micronucleus) alerts by ISS, alerts in:
- parent only
S or N mustard

OECD QSAR Toolbox v.4.2 profilers

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

Carcinogenicity

	E Ultra	Leadscope
FDA RCA Cancer Male Rat	POS_OUT	NEG_IN
FDA RCA Cancer Female Rat	POS_IN	POS_IN
FDA RCA Cancer Rat	POS_OUT	POS_IN
FDA RCA Cancer Male Mouse	POS_IN	POS_IN
FDA RCA Cancer Female Mouse	POS_IN	POS_IN
FDA RCA Cancer Mouse	POS_IN	POS_IN
FDA RCA Cancer Rodent	POS_IN	POS_IN

Commercial models from CASE Ultra and Leadscope

FDA RCA: Data from US Food and Drug Administration as part of Research Cooperation Agreement

Carcinogenicity (genotox and nongenotox) alerts by	y ISS, alerts in:
- parent only	S or N mustard (Genotox); Structural alert for genotoxic carcinogenicity
Oncologic Primary Classification, alerts in:	
- parent only	Aromatic Amine Type Compounds; Nitrogen Mustards Reactive Functional Groups; Phenol Type Compounds
OECD QSAR Toolbox v.4.2 profilers	

Profiler predictions are supporting information to be used together with the relevant QSAR predictions

	Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Liver Specific Cancer in Rat or Mouse		NEG_OUT	NEG_IN	INC_OUT	INC_OUT

DTU-developed models

Abbreviations

INC: inconclusive. A definite call within the defined applicability domain could not be made.

NEG: negative POS: positive

IN: inside applicability domain

OUT: outside applicability domain

Exp: Experimental values, from EpiSuite experimental databases or from QSAR models training sets.

N/A: Not applicable, either because training set data cannot be released for commercial or proprietary models / training sets, or because the model was not developed in a given QSAR software (i.e. a given prediction is not available as the model version does not exist).

Important notes

This is an automatically generated report from the Danish (Q)SAR Database, http://qsar.food.dtu.dk.

For predictions from CASE Ultra, Leadscope, SciQSAR, VEGA as well as the Acute toxicity in rodent from ACDLabs information on the software versions can be found in the QMRFs. For the other predicted properties the software versions are:

EPI MPBPWIN v1.43

EPI HENRYWIN v3.20

EPI WSKOW v1.42

EPI WATERNT v1.01

EPI KOAWIN v1.10

EPI AEROWIN v1.00

EPI KOCWIN v2.00

EPI Level III Fugacity Model (EPI Suite v4.11)

EPI STPWIN (EPI Suite v4.11)

EPI AOPWIN v1.92

EPI BIOWIN v4.10

EPI BCFBAF v3.01

EPI ECOSAR v1.11

EPI DERMWIN v2.02

ACD/ ToxSuite 2.95.1 Ionization\pKa

ACD/ ToxSuite 2.95.1 Ionization\ LogD

ACD/ ToxSuite 2.95.1

17

It is recommended to run the latest version of the EPI Suite Programs in preference of the predictions given in this document when these endpoints are of importance and new versions have been released from the United States Environmental Protection Agency in comparisons. EPI Suite can be downloaded from the US EPA homepage: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

For further information on the applied systems, see the following homepages:

Case Ultra: https://www.multicase.com/case-ultra

Leadscope: https://www.leadscope.com/

VEGA: https://vegahub.it

ToxSuite: https://www.acdlabs.com/

Copyright notice, terms and conditions of use

Copyright notice, terms and conditions of use

Permission is granted to use information from the database as is. The database is an expert tool where the final assessment of properties is not dictated by the (Q)SAR estimates, but by the user's own scientific judgment. Aside from the fact that models are never perfect, the (Q)SAR field is under rapid development and models are regularly updated and improved. It is also impossible to provide the detailed information accompanying each individual prediction that is available to those who do not own licences to the software platforms. The structural information in the database stems from many sources and in some cases it may be wrong. The structures are also in some cases abbreviated in that possible anions and cations have been removed. This can have important toxicological significance (e.g. for Heavy Metal salts).

All access to the database should happen through the provided client-side software and without any use of automated workflow or scripting.

Reproduction of information from the database is permitted provided the source is acknowledged as follows:

Danish (O)SAR Database, National Food Institute, Technical University of Denmark, https://gsar.food.dtu.dk,

The Technical University of Denmark (DTU) is not responsible for any errors or inaccuracies the database may contain and is not liable for any use that may be made of the information contained therein. DTU do not warrant, and hereby disclaim any warranties, with respect to the accuracy, adequacy or completeness of any information obtained from this database. Nor do we warrant that the site will operate in an uninterrupted or error-free manner or that the site and its components are free of viruses or other harmful components. Use of information obtained from or through this site is at your own risk.

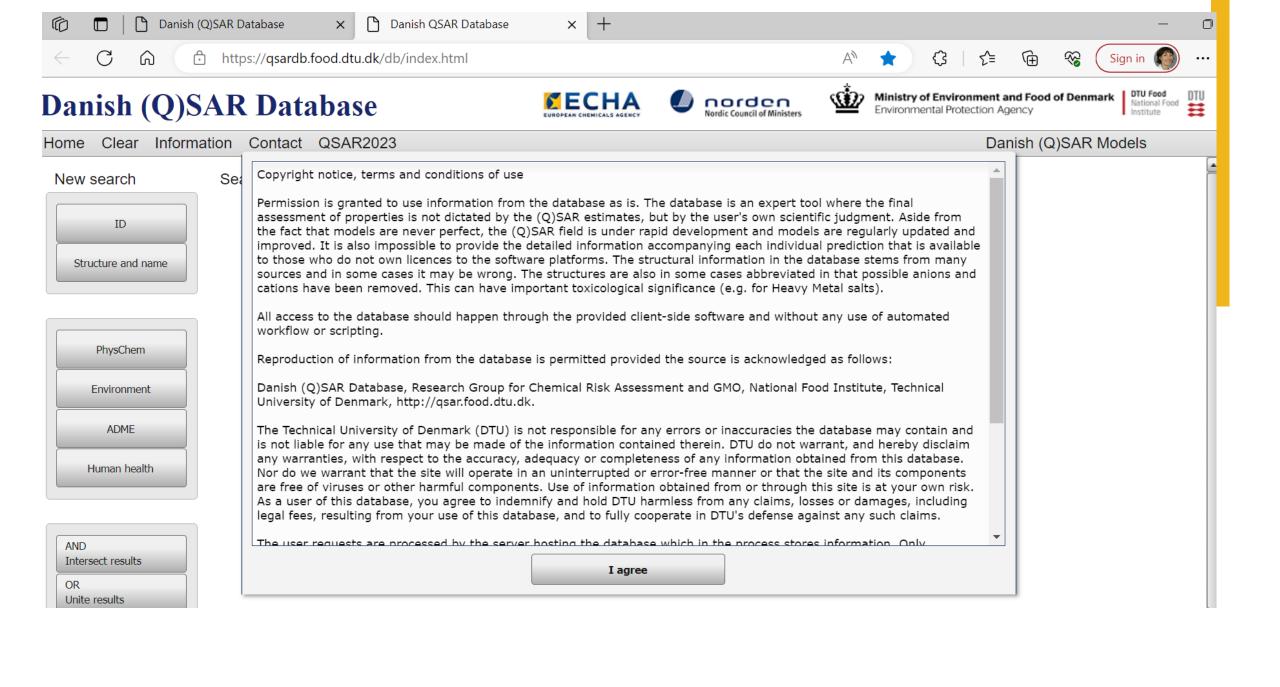
As a user of this database, you agree to indemnify and hold DTU harmless from any claims, losses or damages, including legal fees, resulting from your use of this database, and to fully cooperate in DTU's defense against any such claims.

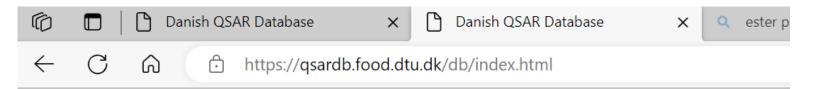
The user requests are processed by the server hosting the database which in the process stores information. Only authorized employees have authorized access to the server and reasonable measures are in place to protect the server from unauthorized access. DTU uses the stored user request information solely for error tracking and to collect anonymized statistics (number of users, number of searches, number of report downloads etc.), and we do not release any information at the level of individual searches. However, as any server/PC/network that the requests pass through may be compromised by unauthorized access, we cannot guarantee that the information submitted by users does not fall into the hands of third parties.

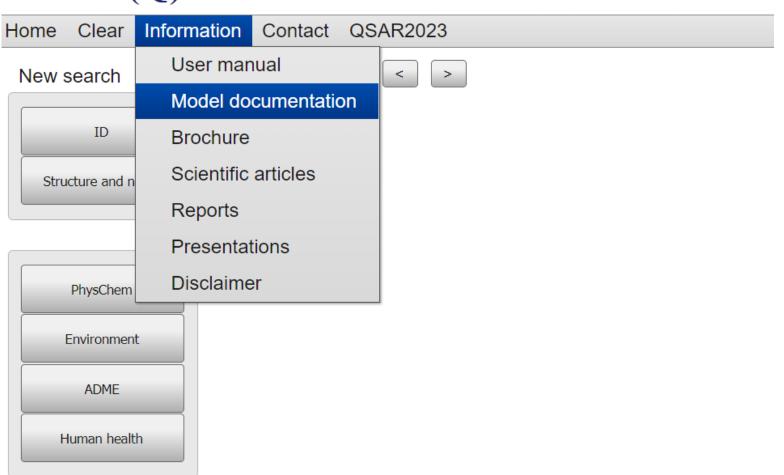
Enter

Danish (Q)SAR Models

Pre-calculated predictions from >200 (Q)SAR Models for >650,000 substances





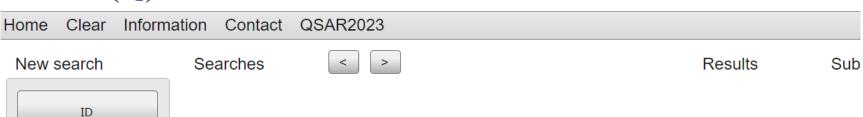


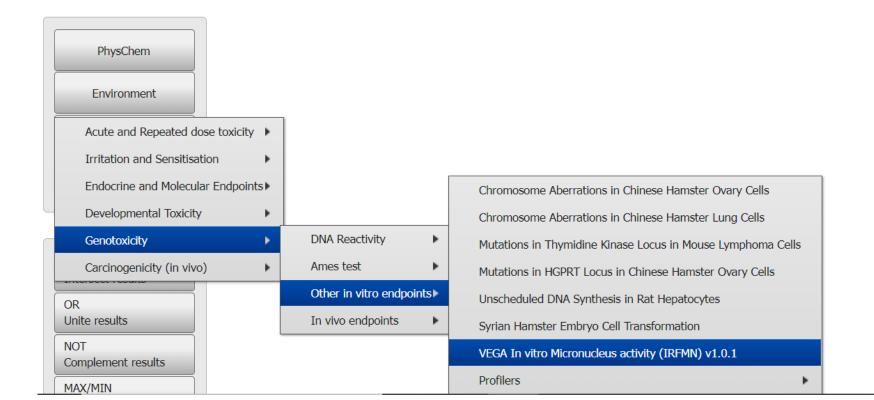
Danish (Q)SAR Database Home Clear Information Contact QSAR2023

Back to search

Endpoint	N in training set	(Cross) validation result (%) ^a	QMRF	Training sets
Water solubility v1.0.1 (mg/L)	4014	Test set in AD: n=341; Q ² =0.91; RMSE=0.69	<u>VEGA</u>	
Air Half-Life (CORAL) v1.0.1 (hr)	76+77+74	Test set in AD: n=34; Q ² =0.89; RMSE=0.29	<u>VEGA</u>	
Not ready biodegradability (POS=Not Ready)	735	Sens=68.9, Spec=87.8, Conc=77.2	CASE Ultra	
		Sens=87.3, Spec=85.2, Conc=86.4	<u>Leadscope</u>	
		Sens=63.0, Spec=92.7, Conc=77.8	<u>SciQSAR</u>	
Ready Biodegradability model v1.0.10 (POS=Not Ready)	582	Test set in AD: n=71, Sens=100, Spec=87, BA=94	<u>VEGA</u>	
Log BCF (CAESAR) v2.1.15 (L/kg)	378	Test set in AD: n=31; Q ² =0.85; RMSE=0.52	<u>VEGA</u>	
Fathead minnow 96h LC50 (mg/L)	565	$R^2=0.75, Q^2=0.73$	<u>Leadscope</u>	
		R ² =0.74, Q ² =0.72	<u>SciQSAR</u>	
Daphnia magna 48h EC50 (mg/L)	626	$R^2=0.67, Q^2=0.64$	<u>Leadscope</u>	
		R ² =0.65, Q ² =0.63	<u>SciQSAR</u>	
Pseudokirchneriella s. 72h EC50 (mg/L)	531	R ² =0.74, Q ² =0.71	<u>Leadscope</u>	
		R ² =0.64, Q ² =0.60	SciQSAR	
Daphnia magna 48h EC50 v1.0.1 (mg/L)	312	Test set in AD: n=44; Q ² =0.66; RMSE = 0.60	<u>VEGA</u>	

• Training sets for DTU models launched later today




Structure and name

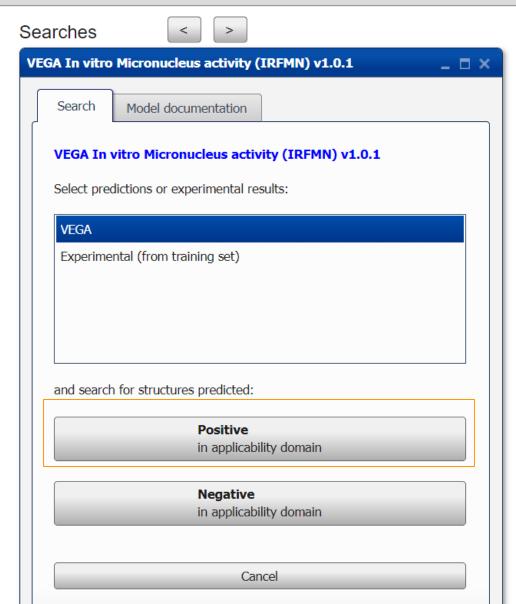
Home Clear Information Contact QSAR2023

New search

PhysChem

Environment

ADME

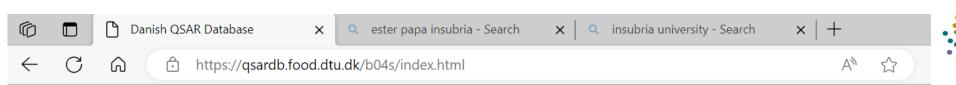

Human health

AND
Intersect results

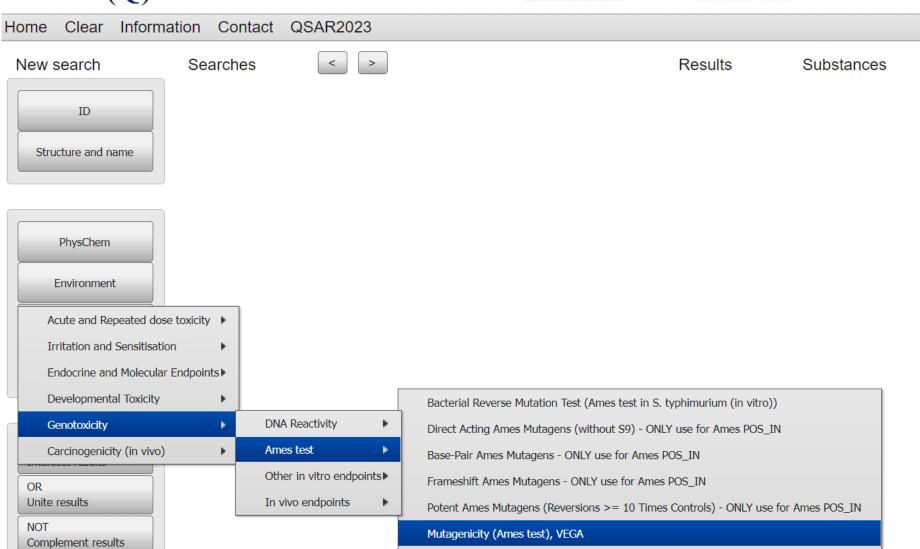
OR
Unite results

NOT
Complement results

MAX/MIN



AND Intersect results


MAX/MIN

LIFE17 GIE/IT/000461

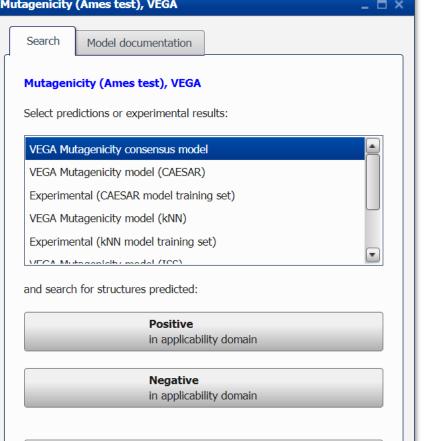
Profilers

PhysChem

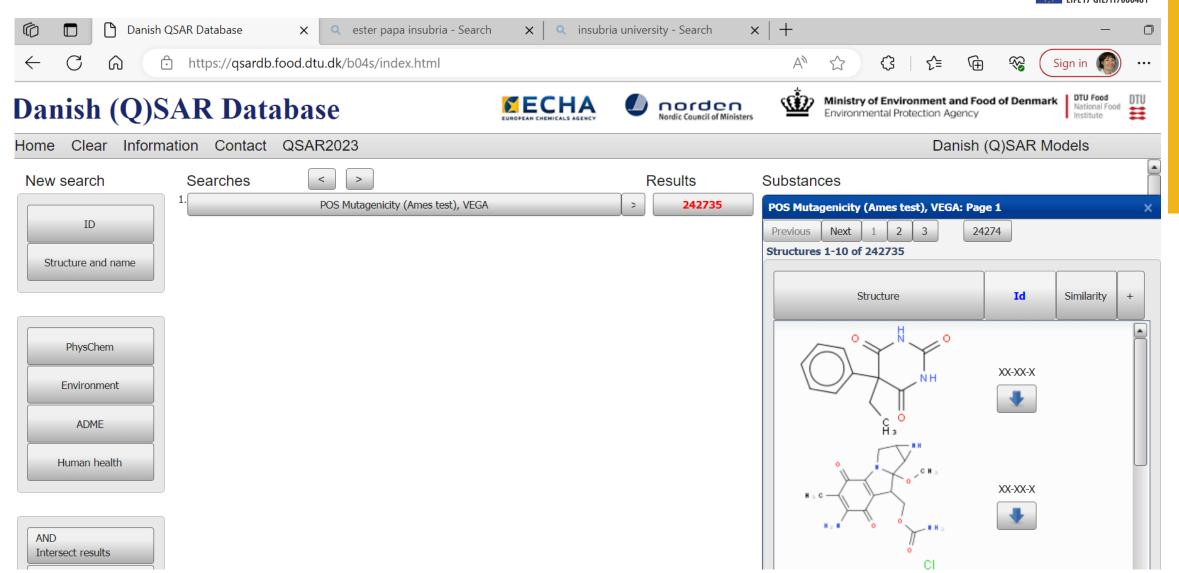
Environment

ADME

Human health


AND

Intersect results


Complement results

Unite results

Structure and name

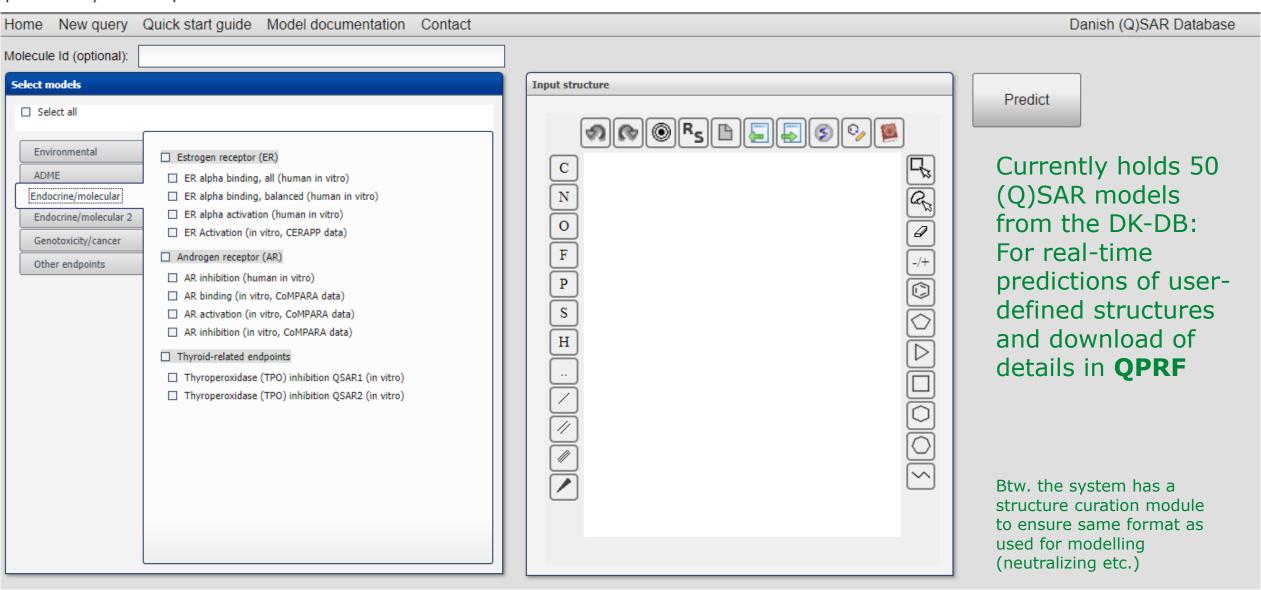
Integration with the OECD QSAR Toolbox in 2018

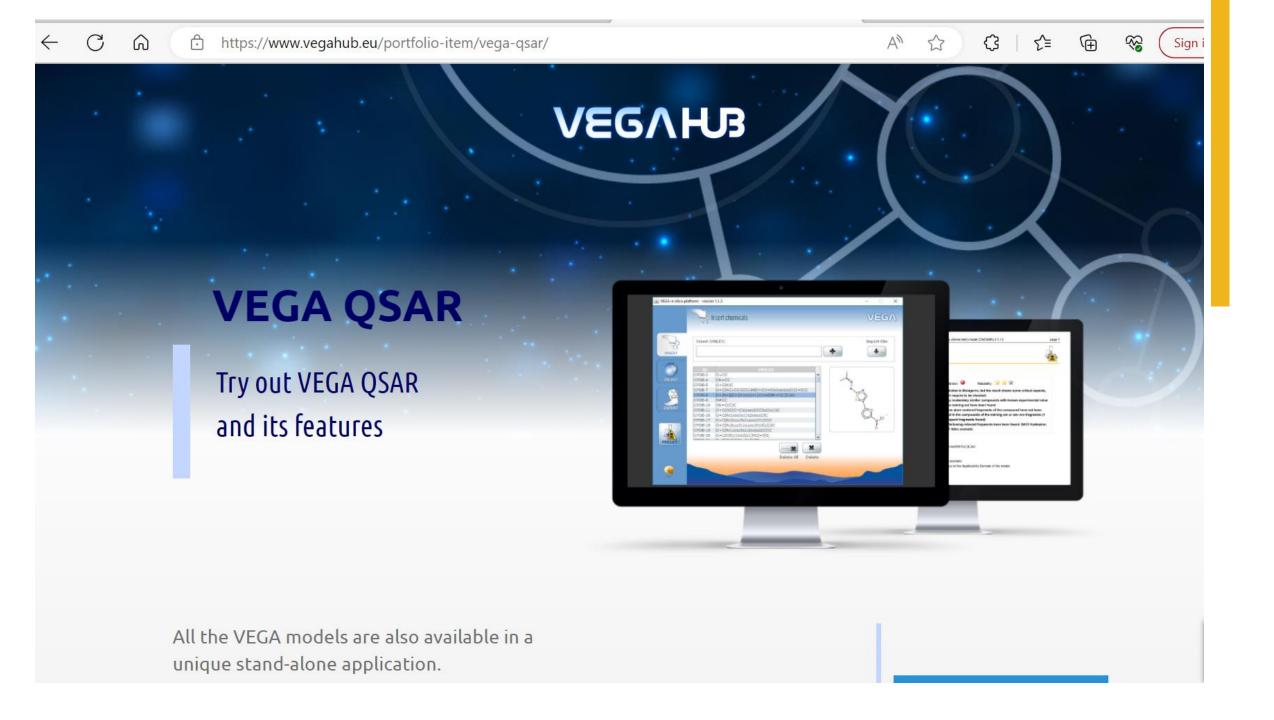
- Previous Danish (Q)SAR Database incorporated
- Danish (Q)SAR Database **integrated** via on-the-fly-access

Use of the Danish (Q)SAR Database (incl. previous versions), examples

- DK EPA advisory classifications screenings (2016-18, 2010, 2009, 2001)
- Grouping and category approach for brominated flame retardants for DK-EPA (2016)
- Endocrine activity screening for DK EPA screening 72,000 REACH substances (2014)
- DK EPA screening 72,000 substances identifying **potential CMR substances** of relevance under the REACH regulation (2013)
- **EU FP7 ChemScreen**, WP on QSAR pre-screen for **reproductive toxicity** screening 72,000 REACH substances (2010-2013)
- **PMT screening** (2017-20), PBT screening (2002), POP screening (1999)
- **EU REACH activities** substance evaluations, dossier evaluations and screening for SEv-candidate substances (for clarification whether SVHC nomination would be relevant), commenting of (Q)SAR-related guidances (e.g. RAAF).

Danish (Q)SAR Models





powered by Leadscope Predictive Data Miner

Thank you

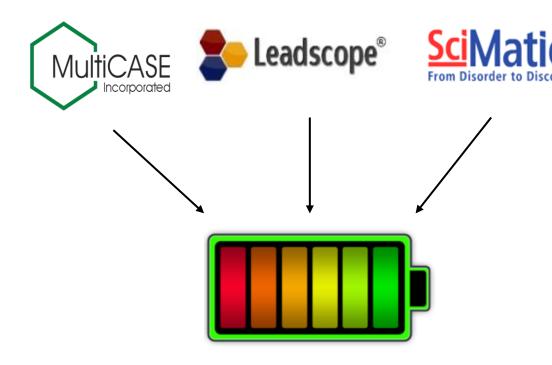
Acknowledgements

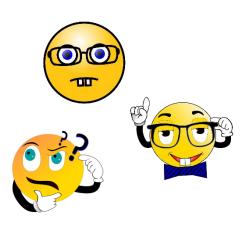
EU LIFE CONCERT REACH for implementation of VEGA models

Danish EPA for 25y general support and many projects to make the Danish (Q)SAR DB

EU projects to expand the DB with new models

Nordic projects for development of the DB and WS for use


ECHA for support and use


EFSA for use for coming Botanicals database

Etc.

Development of battery approach for many training sets

Majority vote for a substance:

requiring models from at least **two systems** to be **within AD and agree** on prediction