

AMBIT – open source tools to integrate and explore chemical substance databases

Dr. Nina Jeliazkova Ideaconsult Ltd. , Sofia, BG

www.ideaconsult.net

Background: AMBIT – open source tools to integrate chemical substance databases

- Developed within a CEFIC Long-Range Initiative (LRI) since 2005
- http://cefic-lri.org/toolbox/ambit/ (links, video & guides)
- Continuously developed and extended through various projects
 - (EU FP7 & H2020 , industry);
- Chemical structure database with support for **substances**
 - including nanomaterials, advanced materials
- Data analysis & prediction tools;
- Tools to process and import data (doi: 10.3390/nano10101908); Export in various formats;
- Supports **REST API** since 2010 (doi:10.1186/1758-2946-3-18)
- Read Across Workflow <u>https://ambitlri.ideaconsult.net</u> with REACH dossiers (and more)
- Open source <u>https://ambit.sf.net</u>

> 900 organisations

What's in a substance ?

IUPAC definition:

a substance is a matter of constant composition, best characterised by the entities (molecules, formula units, atoms) it is composed of.

MECHA

ECHA Substance Identification

A substance is a chemical element and its compounds in the natural state or the result of a manufacturing process.

REACH substance definition as implemented in IUCLID Example: mono-constituent

1.2 Composition		
Monoethylene glycol dimethyl ether	Inree different	
Crude Monoglyme 1	compositions	
Crude Monoglyme 2		
EU: REACH		
>= 🔻 97.1 💌	% (w/w) 🔻	
Constituents A		
		∨∧⊕
1,2-dimethoxyethane / 1,2-dimethoxyethane / 110-71-4 / 203-794-9, ca. 97	'.8 % (w/w), >= 97.1 - <= 97.9 % (w/w)	. ✔ ♠ ♥ ⊕ : ≯
Impurities A		
		✓ ∧ ⊕
1,4-dioxane / 1,4-dioxane / 123-91-1 / 204-661-8, ca. 1.4 % (w/w), >= 1.0 -	- <= 2.0 % (w/w)	· ∨ ∧ ↓ ⊕ : ×
2-methyl-1,3-dioxolane / 2-methyl-1,3-dioxolane / 497-26-7 / 207-841-4, ca	. 0.8 % (w/w), >= 0.5 - <= 1.5 % (w/w)	· ∨ ↑ ↓ ⊕ : ×
unknown organic impurities / unknown, < 0.2 % (w/w), <= 0.5 % (w/w)		· ✔ ↑ ♦ ⊕ ÷ X
Additives A		
		$\lor \land \oplus$

The REACH definition of a substance encompasses all forms of substances and materials on the market, including nanomaterials; and may have complex composition.

Mono-constituent: A substance with one main constituent.

Multi-constituent: A substance with two or more main constituents.

> Main constituent: A constituent, not being an additive or impurity, in a substance that makes up a significant part of that substance. Contributes to the naming of the substance. Concentration of the main constituent(s) = purity of the substance.

Additive: A substance that has been intentionally added to stabilise the substance. Contributes to the substance composition.

Impurity: An unintended constituent present in a substance, as produced. Does not contribute to the naming of the substance

REACH substance definition implemented in IUCLID Example: multi-constituent

http://ambitlri.ideaconsult.net

Chemical substance database (background) ambit

- The publicly accessible chemical databases generally associate chemical substances with a single structure and do not provide easily accessible data on substance identity and composition.
- Cefic's Long-Range Research Initiative (LRI) AMBIT software enable the representation of chemical substances in real industry conditions
- Open source database and web application <u>https://ambit.sourceforge.net</u>

AMBIT Databases support substances (mono & multiconstituents additives, impurities, UVCB), nanomaterials, advanced materials, microplastics

CHAPTER 3

Chemoinformatics Representation of Chemical Structures – A Milestone for Successful Big Data Modelling in Predictive Toxicology

LRI Read Across Tool

i 🏝

Aliznale

arget materia

r I read across analo

fier II read across analog

QØ

https://ambitlri.ideaconsult.net

i 🔺

🔞 📶 🛐 Read Across Assessment

🐐 Home 🛛 💠 New assessment 🔶 New assessment from template 💠 Own assessments 👌 All assessments

A DALLAR KAS Service Concerned by Provid PLANATION PLANA 7.0.2. Deve C.pH+Z.C.1 ----constituery. construction 0.52 (Tens E print 4.1 NDAEL + 273.0 mpt j by Mapfathad date many Photostation and the District and the state of District and the state and District and the state and District and the data state and the state regarise (CBCC) Cubicities of Discussed Province (Notation Acardy) (Exclusion Internation rest affects acrossly (r.g. Alexans to rest affects acrossly (r.g. Alexans to rest affects acrossly (r.g. Alexans to Acardy) (Exclusion Internation (Exclusion Internation (Exclusion Internation (Exclusion Internation (Exclusion (Exclusion Internation (Exclusion NOBL + 1500 y NOBL + 1500 y NOBL + 20010 NOBL + 20010 NOBL - 20010 States - 20010

toxtree models

all modules (3.1.0)

🎢 vega models

Mutagenicity (Ames test) model (CAESAR) (2.1.14) Estrogen Receptor-mediated effect (IRFMN-CERAPP) (1.0.1) Estrogen Receptor Relative Binding Affinity model (IRFMN) (1.0.2) Thyroid Receptor Beta effect (NRMEA) (1.0.1) Ready Biodegradability model (IRFMN) (1.0.10) Total body elimination half-life (QSARINS) (1.0.1) Fathead Minnow LC50 96h (EPA) (1.0.10) Adipose tissue - blood model (INERIS) (1.0.1) Developmental Toxicity model (CAESAR) (2.1.8) Skin Permeation (LogKp) model (Ten Berge) (1.0.1) Androgen Receptor-mediated effect (IRFMN-COMPARA) (1.0.1) Skin Permeation (LogKp) model (Potts and Guy) (1.0.1) BCF model (CAESAR) (2.1.15) Mutagenicity (Ames test) model (SarPy-IRFMN) (1.0.8) Thyroid Receptor Alpha effect (NRMEA) (1.0.1) Carcinogenicity model (CAESAR) (2.1.10) Hepatotoxicity model (IRFMN) (1.0.1) Daphnia Magna LC50 48h (EPA) (1.0.9) In vitro Micronucleus activity (IRFMN-VERMEER) (1.0.1) Skin Sensitization model (CAESAR) (2.1.7)

Toxtree (toxtree.sf.net) Vega integration (collab with IRFMN)

Exact structure Similarity Substruct	icture URL	□ Only hits with substance data 0.9 v isopropyl propionate	، م
trict the search within given dataset_			
Available structure attributes (1/6)	▲ <u>Pr</u>	evious Next VEGA models (0/1)	select expand run hide
CasRN	105-37-3	A VEGA models	
EC number	203-291-4	Hepatotoxicity model (IRFMN) - [prediction]: Unknown	✓
IUCLID 5 Reference substance UUID	UC6-c1f0dc8a-6fbb-4f56-86e4-b52c03fd8c73	Skin Sensitization model (CAESAR) - [prediction]: Sensitizer	*
Names	Unnamedlethvl propionate	Developmental Toxicity model (CAESAR) - [prediction]: Toxicant	*
SMILES		Thyroid Receptor Beta effect (NRMEA) - [prediction]: Inactive	✓
Std. InChl key		Ready Biodegradability model (IRFMN) - [prediction]: Possible Readily Biodegradable	<u>↓</u>
Std. InChl		Androgen Receptor-mediated effect (IRI-MIN-COMPARA) - [prediction]: NON-active	<u> </u>
Adinasa tissua, blaad madal /INEDIS), (/	Inchi=1S/C5H10U2/c1-3-5(6)/-4-2/h3-4H2,1-2H3	Estrogen Receptor Relative Binding Aminity model (IRFWIN) - [prediction]: Inactive	
Adipose dissue - blood model (INCRG) - [4	ASSE	Estrogen Receptol-ineutated enect (IRF/INRA/LERAFY) - [prediction]: Possible NOR-active	· · · · · · · · · · · · · · · · · · ·
Adipose tissue - blood model (INERIS) - [predi	Mutananicity (Amas tast) model (CAESAD) - Invalicition - NON Mutananic	
4	• 0.389	Carcinorenicity model (CAESAR) - [protected]: Notenaugene	· · · · · · · · · · · · · · · · · · ·
Adipose tissue - blood model (INERIS) - [r	reliab	Mutagenicity (Ames test) model (SarPy-IREMN) - [prediction]: Possible NON-Mutagenic	×
•	MODERATE reliability	Thyroid Receptor Alpha effect (NRMEA) - [prediction]: Inactive	
Androgen Receptor-mediated effect (IRFN	MN-C NON-active (EXPERIMENTAL value)	Adipose tissue - blood model (INERIS) - [assessment] : 0.389 (MODERATE reliability) null Adipose tissue - blood model (INERIS) - [prediction] : 0.389 Log units	
	Structure diagram	Adipose tissue - blood model (INERIS) - [reliability] : MODERATE reliability null Androgen Receptor-mediated effect (IRFMN-COMPARA) - [assessment] : NON-active (EXPERIMENTAL value) null Androgen Receptor-mediated effect (IRFMN-COMPARA) - [assessment] : NON-active (EXPERIMENTAL value) null	
		Androgen Receptor-mediated effect (IRFMIN-COMPARA) - [experimental value] . NON-active null Androgen Receptor-mediated effect (IRFMIN-COMPARA) - [reliability] : GOOD reliability null	
		BCF model (CAESAR) - [assessment] : 0.46 log(L/kg) (MODERATE reliability) null BCF model (CAESAR) - [prediction] : 0.456 log(L/kg) BCF model (CAESAR) - [reliability] : MODERATE reliability null	
	6	Carcinogenicity model (CAESAR) - [assessment] : Carcinogen (MODERATE reliability) null Carcinogenicity model (CAESAR) - [reliability] : MODERATE reliability null	
		Daphnia Magna LC50 48h (EPA) - fassessmenti : 147.65 mg/L (EXPERIMENTAL value) null	

LRI Read Across Tool Assessment report with final matrix (section 5 & 6)

or detailed data or rationale for waiving and read-	across, click hyperlinks in the table. These data or ra	ationales can also be found in the annex of the report.					
Tag		CM CM CM					
Substance name	Diglyme	Tetraglyme					
CAS No.							
4.7. Partition coefficient	<u>-0.36</u> (Temperature = 25.0 °C, pH = 7.0) <u>-0.4</u> (Temperature = , pH =)	<u>-0.84</u> ♥ (Temperature = 23.0 °C, pH = ca.7.0 ca.) ●					
7.2.1. Acute toxicity - oral	<u>LD50 = 4760 mg/kg bw</u>	LD50 = 3850 mg/kg bw \$\Phi\$ (Species = rat)\$					
7.2.2. Acute toxicity - inhalation	LC0 = 11 mg/Lair						
7.2.3. Acute toxicity - dermal							
7.3.1. Skin irritation / Corrosion	erythema score = 0.89 / 0 edema score = 0.5 / 0	erythema score = 0.8 ° 0 edema score = 0 ° 0 erythema score = 1.3 ° 0 erythema score = 1.9 ° 0 edema score = 0 ° 0 edema score = 0 ° 0					
7.3.2. Eye irritation	Maximum mean total score (MMTS) = 13 ¢ 0 <u>cornea score = 0</u> ¢ 0 <u>iris score = 0</u> ¢ 0 <u>coniuctivae score = 0.78</u> ¢ 0 <u>chemosis score = 0.28</u> ¢ 0	chemosis score = 0 < 0 chemosis score = 0 < 0 iris score = 0 < 0 cornea score = 0 < 0 iris score = 0 < 0 coniunctivae score = 0 < 0					
7.5.1. Repeated dose toxicity - oral		<u>NOEL = 250 mg/ka bw/dav (actual dose received)</u>					
7.5.2. Repeated dose toxicity - inhalation	NOEC = 370 ppm ♥ (Species = rat, Test type = subacute) NOAEC = 110 ppm ♥ (Species = rat, Test type = subacute) ♥						
7.6.1. Genetic toxicity in vitro	negative (Study type = bacterial reverse						

The report describes the read across workflow in 6 sections and 5 annexes

	×	and an and the second sec	Nira	• <mark>• ×</mark>
← ⇒ C	Attps://ambitlr	ideaconsult.net/tool/ui/assessment_report?bundle_uri=https%3A%2F%2Fambitlri.ideaconsul	t.ne分	0 =
6. Jı	istificat	ion for read-across / category		
Ann Greate Ex	ex 1 Ex	erimental data		
Create Ex	cernie with all us			
Ann	ex 2 Ra	tionale for gap filling		
Subs	tance 3: M	lonoglyme		
7.2.1. Ac	ute toxicity - o	ral		
Endpoint	Value	Conditions Guideline or Justification		
Rational Justified Ann	e for read-acro ex 3 Ra	is based on grouping of substances (category approach)	a	
Subs	lance 4: 1	rigiyine		
7.2.1. AC	vute toxicity - o	ral Cuideline or Justification		
Lindpoint	Vulue	Sex Species		
LD50	5877 mg/kg bw	female rat OECD Guideline 401 (Acute Oral Toxicity)		
lower valu	ie exisits			
Ann	ex 4 Ini	tial matrix		
Create Ex	cel file with the in	itial matrix		
Ann	ex 5 Wo	orking matrix		
Create Ex	cel file with the v	orking matrix		
4				e)

Dashboards : Data quality (REACH dossiers)

Dashboards : TOX Data quality (REACH dossiers)

Number

7065

(0)SAR 107832

0

Dashboards : ECOTOX Data quality (REACH dossiers)

reliability

40194

ē

2

Oxicity

13302

oxicity to 1

 1 (reliable without restriction)
 2 (reliable with restrictions)
 3 (not reliable)
 4 (not assignable) undefined

AMBIT Search for Structures & Endpoint data

2	mb			Search	•	Assessm	ents 🔻	Impor	t▼ Er	nhanced functio	ns • Admin	✓ Help ▼					[ambit3] Log of	
*	▲ > <u>Sear</u>	ch structures and a	ssociated da	ata														
	Exac	t structure Simil	arity Sub	structure	URL						🗆 En	able fragment	search 111-96	6			× ×	
	Ide	ntifiers Datas	sets	• entries		revious Nex	xt 🗈	-	-	_		1) Fi	nd Struct	ture(s)		-	Export	
		Diagram	CaseN	EC numbe				Namos	A	Trade Name			Std In Chi kay		REACH regis	tration d	ato 🔺 Similarity 🕯	
	- 1 - 6 203-					EC number IUCLID 5 Re 203-924-4 ECHA-d1 1-methooy bis(2-me ether[Ett methoxy oxybis[2			ioxy-2-(2- cyethoxy)ethane, nethoxyethyl) ithane, 1,1'-oxybis 2- ky-JEthane, 1,1'- [2-methoxy-		-	O(C)CCO	SBZXBUIDTXKZ UHFFFAOYSA-N	TM- InChI=1S	30.11.2010		-	
Showing from 1 to 8 in pages of 20 v substances																		
a sources/n	2) Find				ubstance N	bstance Name Substa			nce Substance Type Pul D \$		Public name 👙	Reference substance ≑ UUID	Owner	r ≑	Info ¢	Contained in as 👙		
ct dat	Sub	stance(s)	- 1 -	<u>bis(2-</u>	metho	<u>xyethyl) et</u> l	her		<u>ЕСНА-71</u>	-719 mono constituent Diglyme substance			ECHA-eab ©			constituent ①		
Sele			- 2 -	<u>Glyme</u> <u>ether</u> Diglyn	es Die (DEGI ne) IC	thylene glyd DME, CS MSe DE7	col dimeth	וער	IUC5-a4	a43 mono constituent Diglyme substance			<u>ECB5-196</u> ሮ	<u>Clariant Produkte (GmbH / Sulzbach ; Germany</u>	(<u>Deutschland)</u> am Taunus /	constituent		
	IUC Substar Con Con	nce Composition Tox (1 position name: Crude Diglym position UUID: L-327712f8-62 L-327712f8-62	12) P-Chem (4) e 26c-4bd0-b915-621c4b	Eco Tox (8)	Env F	Fate (4)						IUC Subs Filter Diglyme 6.1.1 short	stance Composition	3) Display x (12) P-Chem (4) F	data Eco Tox (8) Env Fate	e (4) Exp	and all Collapse all	
	Туре	Na	ame	¢ EC	CAS	Typical	Concentrati	on ranges				Test Medium 0	Organism Meas. Conc. Exposi	Endpoint 🔶 Effect 🗄	Based on Guideline Owne	er) Relia	bility 🔶 UUID)	
	Constituent		ky)Ethane,Bis(2-Metho hoxy-,Ethane, 1,1'-Oxyl	xyethyl) 203 bis[2- 924 4	- 111- - 96-6	ca.92 % (w/w)	>=85 % (w/w)	<=99 % (w/w)	Also contained in			freshwater Showing 1	euciscus meas. (not spe 96 h idus meas. (not spe 96 h study(s) (1 to 1)	LC0 > 2000 mg/L mortality t NOEC 2000 mg/L mortality t	est mat DIN 38412, est mat L15	2 (reliat restric	ttions) Previous Next	
	Impurity	2-(2- Methoxyethoxy)Ethanol,Diethyler 2-(2-Methoxyethoxy)-,2-(2'-Meth Methoxyethoxy)Ethan-1-Ol,Mdg,I	neglycolmonomethyl_e noxyethoxy)Ethanol,2-(Diethylene Glycol Meth	203 ther,Ethanol, 906 2- 6 yl Ether,3,6-	- 111- - 77-3	ca.8 % (w/w)	>=1 % (w/w)	<=15 % (w/w)	Also contained in			6.1.3 Short	-term toxicity to aquatic inve term toxicity to aquatic inver	rterbrates (2) terbrates (1)			•	
	Impurity	Dioxa-1-Heptanol,2-Hydroxyethy Unknown,Unknown Organic In	l 2-Methoxyethyl Ethe npurities	r		<1 % (w/w)	0 % (w/w)	<1.5 % (w/w)	Also			6.1.5 Toxici	ity to aquatic algae and cyane	obacteria (2)			-	

AMBIT Search for Structures

Exact, Similarity & Substructure

a	nbi		Ö	Search •	Assessments	s ▼ Import ▼ E	nhanced functio	ns 🔹 Admir	n.▼ Help	•		Log in	
^	Searc	h structures and as	sociated	<u>data</u>									
	Exact structure Similarity Substructure URL Enable fragment search 🛛 111-96-6												
	Identifiers Datasets Export												
	Showir	ng from 1 to 1 in pag	es of 20	 entries 	Previous Ne	<u>xt</u> 🕨				Filter			
		Diagram	CasRN	EC number	IUCLID 5 R	Names 🔶	Trade Name 🌲	IUPAC name	SMILES \$	Std. InChi key 🍦	Std. InChi 🔶	REACH registration date	
	- 1 -	~~~~	111-96- 6	203-924-4	ECHA-d1	1-methoxy-2-(2- methoxyethoxy)ethane, bis(2-methoxyethyl) ether[Ethane, 1,1'- oxybis 2-methoxy- [Ethane, 1,1'-oxybis[2- methoxy-	Diglyme	-	0(C)CCO ම	SBZXBUIDTXKZTM- UHFFFAOYSA-N	InChI=1S ੴ	30.11.2010	

Exact	structure Simila	rity Sub	ostructure URL								
Only hits with substance data O.9 OCCOCCO											
Identifiers Datasets Ex											
Showin	g from 1 to 3 in page	s of 20	• entries • Previous Ne	<u>xt</u> Filter							
	Diagram	CasRN	IUCLID 5 Reference subst	Names 🍦	Similarity 🔻						
- 2 -	H0 000	111-46- 6	ECHA-d6 ବ	2,2'-oxydiethanol 2,2'-oxybisethanol Ethanol, 2,2'- oxybis-ldihydroxy diethyl ether[2,2'oxybisethanol Diethylene glycol, 2,2'- oxydiethanol (2-hydroxyethoxy)ethan-2-ol 2-(2- hydroxyethoxy)ethanol	1						
- 3 -	• • • • • • • • • • • • • • • • • • • •	68909- 76-2	-	Ethanol, 2,2'-oxybis-, reaction products with ammonia, fractionation forecuts	1						
- 1 -	HO	110-80- 5	ECHA-50 ତ	2-ethoxyethanol Ethanol, 2-ethoxy- Monoethyleneglycol ethyl ether Ethylglycol EEMEG. Ethylene glycol monoethyl ether	0.92						

Exact structure	Similarity Subs	tructure UIL	Custor	n SMARTS OCCOCCO							
Identifiers	Datasets		_	_							
Showing from 1 to 2	Showing from 1 to 20 in pages of 20 entries Previous Next										
	Diagram	IUCLID 5 Reference subs	Names ϕ	Std. InChi key 🔶							
-1- 9	~ <u>`</u> ,	-		HMFHBZSHGGEWLO-SOOFDHNKSA-N							
- 2 - B	X			CIWBSHSKHKDKBQ-JLAZNSOCSA-N							
-3- •	Ş	-		FIPWRUSWJWJAI-UHFFFAOYSA-N							

Structure similarity search (>300 mln structures)

Query completed in 1.247268e-01 s 2018-12-19 12:15:15,900 INFO ExCAPE-DB: ExCAPE chemogenor X + ← → C iii https://solr.ideaconsult.net/search/excape, Home Help 1 EXO ExCAPE-DB: ExCAPE chemogenomics database Free-text Similarity Substructure Hits list Selection Data sources (172) ADCY1 ACLY Species (172) < 1 2 3 ... 17 18 > displaying 1 to 10 of 172 Orthologous group (172) Gene symbol (998131) that . pubchem CID44442239 (ADUIGXWIHRSFTE-UHFFFAOYNA-N) AADAT ABAT ABCB1 TOX.pubchem A pXC50 = 5.25181 [ACLY] [AID307170] ABCB1A ABCB1B ABCC1 Chemical structure ABCC8 ABCC9 ABCG2 · \V ABHD6 ABL1 ABL2 ACACA chembl20 CHEMBL94168 (ABSVJDSEPWWKHF-ZMLAUIGSNA-N) ACACB ACE ACE2 ACHE TOX.chembl20 A pXC50 = 6.76 [ADCY1] [CHEMBL:31878] ACKR3 ACLY ACOX1 ACP1 Chemical structure ACR ADA ADAM10 ADAM17 ADAMT54 ADAMT55 ADCY1 chembl20 CHEMBL120848 (AABRCJOCZXVLOE-PWIKPTQSNA-N) ADCY5 ADK ADM ADORA1 ithing TOX.chembl20 N pXC50 = 4.74 [ACLY] [CHEMBL:29518] ADORAZA ADORAZB ADORA3 Chemical structure

0 8 X

ρ/

* 0 0 0 0 0

Download

Clear

e

đ

đ

Add to Selection

Add to Selection

Add to Selection

Enter free text phrase.

Noé Sturm 🖂, Andreas Mayr, Thanh Le Van, Vladimir Chupakhin, Hugo Ceulemans, Joerg Wegner, Jose-Felipe Golib-Dzib, Nina Jeliazkova, Yves Vandriessche, Stanislav Böhm, Vojtech Cima, Jan Martinovic, Nigel Greene, Tom Vander Aa, Thomas J. Ashby, Sepp Hochreiter, Ola Engkvist, Günter Klambauer 🗠 & Hongming Chen 🖂

Journal of Cheminformatics 12, Article number: 26 (2020) Cite this article

 \swarrow <u>لمار</u>

AMBIT3 : <u>Substance</u> similarity query (example)

- <u>Query</u>: Pinene oligomers (UVCB)
- <u>Hits</u>:
 - Benzenesulfonic acid, 4-mono-C20-24 (even numbered)-alkyl derivs., magnesium salts Benzenesulfonic acid, mono-C20-24-alkyl derivs., magnesium salts
 - Tetradecyl methacrylate 2-Propenoic acid, 2-methyl-, tetradecyl ester
 - Decanoic acid, mixed esters with dipentaerythritol, heptanoic acid, isononanoic acid, and octanoic acid
 - Benzenesulfonic acid, 4-(branched alkyl derivs.) and benzenesulfonic acid, 4-(linear alkyl dervis.), calcium salts
 - Benzenesulfonic acid, C14-44-branched and linear alkyl derivs., calcium salts, overbased
 - (Z)-9-Octadecen-1-ol ethoxylated
 - Decanoic acid, mixed esters with dipentaerythritol, heptanoic acid and octanoic acid. Hatcol 5127

AMBIT 3 Data maps (REACH dossiers)

AMBIT 3 Data maps (REACH dossiers)

Substance similarity by multiple properties

Color by quartiles

Color:Water solubility Green: low Blue : below median **Orange : above median Red : highest water solubility**

Water solubility

AMBIT 3 Data maps (REACH dossiers)

075 Q100

AMBIT 3 Data maps (REPDOSE, Fraunhofer ITEM)

Repeated oral toxicity, LOEL Color by quartiles

Substance similarity search, based on the maps (User Interface)

Substance search × +					\sim – \Box >
\leftarrow \rightarrow C (ambitlri-dev.ideaconsult.	net/app/tool3/eda/index.html				९ 🖻 🖈 🗖 🌚
©; a	Substance search				i 🐣
😤 Hon	ne 🛛 Search 💠 Read across 🎾 F	Predict Search Se	arch		
PFOA	0			simple	~
PFOA 335-67-1 Selected substance	rage			Aavancea search	
substance REPDOS PFOA 335-67-1					
acute & repeated dose tox & physchem &	composition 0			20 Number of hits	
substance	mono-constituent substance/organic	IUC6-baba1b22-16da-425b-8c79-7d182b2d540	mono-constituent s	ubstance/organic	mono-constituent substance/organic
(1.00) PFOA 335-67-1	(0.46) 2,2'-methylenediphenyl diisocya	(0.44) 5-acetylamino-N,N'-bis(2,3-dihy	(0.44) 4-methyl-	4'-n-propyl-[1,1-biphe	(0.44) 3,7-Diazabicyclo[3.3.1]nonane-1,
	mono-constituent substance/organic	IUC6-ba4aed83-490b-49f2-834e-a3e6d8642d4	UVCB/organic		UVCB/organic
(0.44) [R(R*,R*)]-2,3-bis[(4-methylben	(0.44) Disodium 5-[[4-[(2-bromo-1-ox	(0.44) 2-(4,6-diphenyl-1,3,5-triazin-2-y	(0.44) Oligomeris	ation products of ethyl	(0.43) Alcohols, C8-10, ethoxylated
UVCB/organic	mono-constituent substance/organic		mono-constituent s	ubstance/organic	mono-constituent substance/organic
(0.43) Fatty acids, vegetable-oil, polym	(0.43) Methyl octanoate	(0.43) ETHYLENE GLYCOL BIS(BENZENESUL	(0.43) 17-acetoxy	-1β,2β-methanopegna	(0.43) Camphene
mono-constituent substance/organic	IUC6-f5c15422-b55f-4779-94b7-da168476b131	IUC6-b721e891-72ca-4a87-b065-b3b51b4c3c9:	mono-constituent s	ubstance/organic	
(0.43) 4-isobutyl-2-methylbenzaldehy	(0.43) UK-292,679	(0.43) 2,4,6-tris(2,4,6-tribromophenoxy	(0.43) 4-fluoroan	iline	(0.42) Ethyl 4-hydroxy-2H-1,2-benzothi

Substance similarity search, based on the maps (User Interface)

 $\equiv i \&$

\leftrightarrow \rightarrow C (a ambitlri-dev.ideaconsult.	.net/app/tool3/eda/index.html		IUC Substance Compositio	in Eco Tox (5) Env Fate (4) P-Chem (9) Tox (20)	mand all Collanse all						
© ambi	1 3 Substance search			Disperse Blue 056, 056:1, 056:2 7.2.1 Acute toxicity - oral (2)							
倄 Home 🕻	🞗 Search 💠 Read across 🏼 🎢 Pre	edict Search S	earch	7.2.2 Acute toxicity - inhalation (1) 7.2.3 Acute toxicity - dermal (1) 7.3.1 Skin irritation / Corrosion (2)							
				7.3.2 Eye irritation (2)							
pigment blue	0		7.4.1 Skin sensitisation (2) 7.5.1 Repeated dose toxicity - ora	(1)	_						
	Page		7.5 Z Repeated dose toxicity - inh	alation (1)							
Disodium 4,8-diamino-1,5-dihydroxy-9,1	10-dioxoanthracene-2,6-disulphonate C.	I. Acid Blue 45 (1.00) Reaction	products of 1,5-diap	7.5.3 Repeated dose toxicity - der	mal (1)						
Selected substance		With bromine D Selected similar s	ubstance	7.6.1 Genetic toxicity in vitro (5)							
				7.8.2 Developmental toxicity / ter	atogenicity (1)						
Disodium 4,8-diamino-1,5-dihydro	N-(2,3-dihydro-2-oxo-1H-benzimi	4,4'-[(3,3'-dichloro[1,1'-biphenyl]-4	N,N'-naphthalene-	1,5-diylbis[4-[(2	Barium bis[6-chloro-4-[(2-hydrox						
structure similarity	∽ 0			10							
Cincil suits type	Page		Ν	lumber of hits							
mono-constituent substance/organic	mono-constituent substance/organic	mono-constituent substance/organic	multi-constituent subst	ance/organic	mono-constituent substance/organic						
(1.00) Disodium 4,8-diamino-1,5-di	00) Disodium 4,8-diamino-1,5-di (1.00) 3,10-bis[(4-amino-2,5-disul (1.00) 1-amino-4-(3-amino-2,4,6			iss of disodium 1	(1.00) Sodium 1-amino-9,10-dihydr						
IUC6-1c5db06f-bf0e-4688-b0bc-534ed96d7cdb	UVCB/organic		multi-constituent subst	ance/organic	mono-constituent substance/organic						
(1.00) disodium salts of sulfonated	(1.00) Reaction products of 1,5-dia	(1.00) Disodium 9,10-dihydro-9,10	(1.00) Reaction mo	uss of sodium 4-((1.00) Sodium 1-amino-4-bromo-9						

https://ambitlri-dev.ideaconsult.net

\odot	Substance search	×
---------	------------------	---

\leftrightarrow \rightarrow C (a) ambitlri-dev.ideaconsult.net/app/tool3/#

+

୍ ଜ ☆ 🗯 🗖 🌚 :

🕲 amhit 3 Substance search	i 3 Substance search					i &											
😭 Home 🛛 Q Search 💠 Read across 🎾 Predict																	
Query			Sc	ource													
Enter query						REACH dossiers ~											
Choose property 😧			Cł	noose qu	antile												
P-CHEM Vapour pressure VAPOUR_PRESSURE Pa (23356) P-CHEM Partition coefficient LOG_POW (34622) P-CHEM Melting point/freezing point MELTING_POINT °C (30426) P-CHEM Water solubility WATER_SOLUBILITY mg/L (20839)		· ·		70 80 90 100								▲ ▼					
Show 10 v entries							Se	earch: ((Q090_s	:PC_W	ATER_S	DL_SECTION_f9a					
Description	 Substance type 	~ Q010	^ Q020	^ Q030	^ Q040	^ Q050	^ Q060	^ Q070	^ Q080	^ Q090	^ Q100	^ Find similar by ^					
[3-(2,3-epoxypropoxy)propyl]diethoxymethylsilane KBE-402	mono-constituent substance	Ð	DØ		□@0 0	0 0		000		٥	6	∆property Qstructure					
N-[3-(trimethoxysilyl)propyl]aniline	mono-constituent substance		000	© 0		 0	□0			٥	6	Aproperty Qstructure					
2-chloropyridine Halogenated pyridine	mono-constituent substance	00	00 0	0						٥	6	∆property Qstructure					
2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane	mono-constituent substance	Ø		D	Ø	0		00	□00	6	6	∆property Qstructure					
Reaction product of alkylaryl sulphonic acid and alkanolamine	UVCB			Ø						6	6	∆property Qstructure					
N,N-diethyl-3-oxobutyramide	mono-constituent substance	FF	000 0		D	0		0		6	6	Aproperty Qstructure					
Thiosemicarbazide	mono-constituent substance	00 00	0						00 00 00 00 00	6	\$	∆property Qstructure					
[3-(2,3-epoxypropoxy)propyl]triethoxysilane	mono-constituent substance	Dø	0		00		D			٥	٥	∆property Qstructure					

AMBIT 3 LRI Read Across Tool

S LRI Read Across tool × +				✓ - □ X						
← → C					९ 🖻 🛧 🗯 🗖 🌘 :	O ideacons	sult/notebooks-ambit: N × +	• - □ ×	O therealified faithers x +	
🛞 ambit Read Across tool i 🔺					· · · · · · · · · · · · · · · · · · ·				← → C a ginbacende/decond/(total	
						$\leftarrow \rightarrow G$ is github.com/ideaconsult/notebo) 🛱 🐂 🞯 🤃	iToxKit	
*				0	[^]	JarvaScript like of of them-informatics UI and data management tools Background				
Q Structures, substances, studies	1	Read across assessments	1	Chemical structure properties	I				Since the toolfs) toilers to provide different types of low-tionality - ison notorealing the single data spectrag matchedies, to particip and emission provides approaches to provide provides provides and to file seen thing violating and manipulating theme-forwards taken Theoreties evolution transformed in transform the	
	Search	Read across			Predict	☐ ideaconsult / notebooks-ambit	onsult / notebooks-ambit	τh ΔMRIT ΔΡΙ	 Functionality is spread among three layers core (data communication & orchestration) widgets (solated UI elements) and kits (sluit sinctional, ready-to-be used bundles providing and use experience). 	
	structures and (meta) data		Create or explore assessments		Apply predictive models	Notebooks demonstrating interaction with AN			Unite a LUCD-like principle, i.e., shilly be cembine different pieces of Anacionality together, e.g different translation types. Methodology also known as sinity Component System. The tare is provided by the reveal dedicated theory active, which has drops replanation on the paradigm. What	
a Data sources			≯ toxtree models			2 stars Search or jump to Dull requests Issues Marketplace			In provides in the addry to accord provide interfacional processor for a "test", a testady instrument, a testady and a second processor in the according to a second test and and any according to a second test and any according to a second test and according to a second test according	
							📮 ideaconsult / ambit-knime		The shift-sets layering follows simple principles:	
REACH Study Results 19-02-2021			all modules (3.1.0)						 Skills in core know nothing about UI - they provide pure data translation and manipulation functionality, which can freely be used on a server-side application as well. 	
OpenFoodTox			≯ vega models			Code	<> Code ① Issues \$`` Pull reque	ests 🕞 Actions 🖽 Projects	CD W Shifts in widgets a focused in solf-costained, standalone UT elements, which can be combined in an arbitrary way to proclass derived likel UT. Code in Netics and a likel acted, but starter provides full blown UTs which can be easily configured and	
REPDOSE - RELATIONAL DATABASE ON SUBACUTE TO CHRONIC TOXICITY			Mutagenicity (Ames test) model (CAESAR) (2114)				README md		embedded in any web page. Skills form care and widgets are designed to work (cyrcher quite weally for example gif. Transitions skill expects the agent (& instance) to how "reactabletegeness method which comes for white	
			Estrogen Receptor-mediated effect (IRFMN-CERAPP) (1.0.1)			ۻ mas			jt.issteriaritansiation or from jt.isofaritansiation, and then expects to have method attentions which could come from jt.isou transpering skill, for example.	
Legal notice The LBI AMBIT - ILCLID tool is loaded with non-confidential REACH data supplied by ECHA. The legal notice from the ECHA dissemination website applies to the AMBIT users. In addition, Ceffc disclaims any liability of whatsoever nature either direct or indirect regarding the use of the AMBIT-ILCLID tool or information / data contained in it. IdeoConsult is a contractor of Cefe developing and hosting the AMBIT-ILCLID tool. Some data used may have been provided by Ceffic. IdeoConsult has acted solely on the instructions of Cefe. IdeoConsult disclaims any liability of whatsoever nature for any use or misuse of the AMBIT-ILCLID tool.			Estrogen Receptor Relative Binding Affinity model (RFMN) (10.2)			ambit-knime				
			Thyroid Receptor Beta effect (NBMEA) (1.0.1) Ready Biodegradability model (NR1MN) (10.10) Total body elimination half-life (qSABINS) (1.0.1)			vec			REST APT & libraries	
							This repository contains a set of K	NIME nodes for AMBIT.		
							Download the appropriate KNIME	node JAR file from the releas		
			Fathead Minnow LC50 96h (EPA) (1.0.10)				Example KNIME workflows that de	emonstrate the Ambit nodes	101	
			Adipose tissue - blood model (INERIS) (1.0.1)			E README.md			bynanomapper 1.0.4	
AMBIT supports read across and category formation of chemicals, which are indispensable techniques in the safety assessments of chemicals. Comprehensive assessment workflows are developed for read-across and category formation based on all the data available in AMBIT. The assessment workflow for lacitlates the search for target and source structures, generating data matrices, gap filling and generating assessment reports with predefined formats outomatically.			Developmental Toxicity model (CAESAR) (21.8)							
			Skin Permeation (LogKp) model (Ten Berge) (1.0.1)			notebooks-ambit pi			p install pynanomapper 📙	
			Androgen Receptor-mediated effect (IRFMN-COMPARA) (1.0.1)							
			Skin Permeation (LogKp) model (Potts and Guy) (1.0.1)			🔩 launch	h binder 🚺 Open in Colab			
								-		

https://ambitlri-dev.ideaconsult.net support@ideaconsult.net

AMBIT 3 LRI Read Across Tool https://ambitlri-dev.ideaconsult.net/ 🕉 🔐 📲 LRI Read Across tool = i 🍰 Q Structures, substances, studies Search structures and (meta) data Read across assessment: Read across Create or explore assessments Chemical structure properties Predict Apply predictive models Data sources Z toxtree models all modules (3.1.0) REACH Study Results 19-02-2021 OpenFoodTox 🗡 vega models REPDOSE - RELATIONAL DATABASI Mutagenicity (Ames test) mode Estrogen Receptor-mediated eff Estrogen Receptor Relative Bindi Legal notice Thyroid Receptor Beta effect (NR The LRI AMBIT - IUCLID tool is loaded with non-confidential Ready Biodegradability model (I REACH data supplied by ECHA The legal notice from the ECHA Total body elimination half-life (dissemination website applies to the AMBIT users. In addition, Cefic Fathead Minnow LC50 96h (EPA) disclaims any liability of whatsoever nature either direct Adipose tissue - blood model (It or indirect regarding the use of the AMBIT-IUCLID tool or Developmental Taxicity model (information / data contained in it. IdeaConsult is a contractor of Skin Permeation (LogKp) model Cefic developing and hosting the AMBIT-IUCLID tool. Some data ndrogen Pecentor-medicited e 11 -

Frontend updates

- New responsive design
- Upgrade of existing user interface
 - Read Across, Structure search
- New user interface
 - Dashboard, substance similarity

New functionalities

- IUCLID6.6 support
- VEGA integration through REST API
- Data maps similarity search

Backend updates:

- New data integration approach through search engine (metadata, data and multi property similarity)
- Modular (microservices)

ideaconsult / ambit-docker (Public) P master - ambit-docker / examples / echa-reach / ... 🚱 kerberizer examples: add ECHA-REACH ... 📖 🗸 on Sep 3, 2021 🕚 History data_import 3 years ago README.md 16 months ago Ph. ambit-config.env 3 years ago docker-compose.yml 3 years ago IE README.md 1 The Cefic-LRI cheminformatics tool The Cefic-LRI cheminformatics data management tool. Note that no data is included and must be provided separately. If you are a Cefic member, you can download the data from the Cefic members extranet.

NB: The file containing the data is echa substance food.sql.xz.

k Start

0

II Docker Compose if you haven't already. clone https://github.com/ideaconsult/ambit-docker.git mbit-docker/examples/echa-reach / echa_substance_food.sql.xz to the data_import directory. cer-compose pull ten-compose up 7. Open http://127.0.0.1:8080/ambit in your browser 8. Press ctr1 + c in the console, where docker-compose up is running, to stop it.

See the main README.md for more information.

https://github.com/ideaconsult/ambit-docker/

Distribution using modern containerized approach

ambit (nano/advanced)materials are substances

A large compilation of nanosafety data, generated by past and ongoing EU funded NanoSafety Cluster projects have been integrated.

Nanomaterials safety data (public & private)

https://search.data.enanomapper.net EUON (public enanomapper)

https://euon.echa.europa.eu/enanomapper

nature nanotechnology

Analysis | Published: 20 May 2021

Towards FAIR nanosafety data

Nina Jeliazkova 🖂, Margarita D. Apostolova, [...]Penny Nymark 🖂

Nature Nanotechnology 16, 644–654 (2021) Cite this article

Thank you!

Questions?

