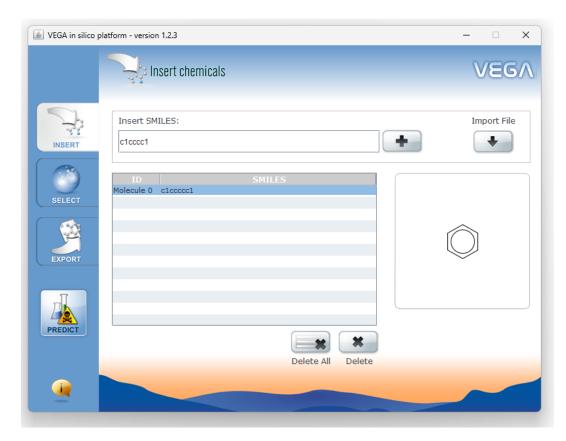
The new QSAR models

CONCERT REACH

- New QSAR models developed within two different project actions
- Models have been implemented in the VEGA software and they are freely available
- A total of **42** models have been implemented

VEGA

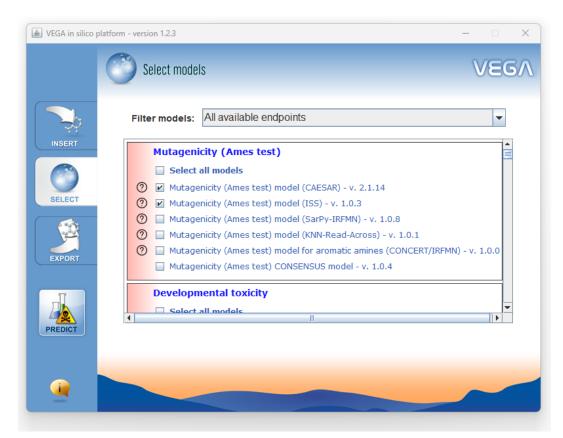

- Stand-alone application with a great number of QSAR models that predict properties and biological activities of compounds from their chemical structure
- Output as **complete reports** (PDF) and text based summaries
- Freely available, from the website: https://www.vegahub.eu/
- Runs on local machine (no data sharing with external servers)
 - Latest version: 112 models available

How it works

Easy to use, target molecules are provided in input (as SMILES strings) and the models of interest are selected. The software produces the output files (PDF reports and/or text summaries) in the

selected directory.

The models



Models grouped in categories:

- Human toxicity
- Ecotoxicity
- Fate & Distribution
- Physical-chemical properties
- Human & ecological PBPK

For several endpoints, multiple models are

available (developed with different approaches)

The **QMRF** (QSAR Model Reporting Format) document is available for each model, containing details about it – relevant for models acceptance and use for regulatory

purposes – like:

- Definition of the algorithms
- Source of the data used
- Definition of the Applicability Domain
- Scientific references

00	QMRF identifier (JRC Inventory): To be entered by JRC
	QMRF Title: Mutagenicity ISS Model - v. 1.0.2
	Printing Date: 30-05-2018

1.QSAR identifier

1.1.QSAR identifier (title):

Mutagenicity ISS Model (version 1.0.2)

1.2. Other related models:

This is the description of the VEGA model that implements the "In vitro mutagenicity (Ames test) alerts by ISS" as present in the software ToxTree v. 2.6

1.3.Software coding the model:

VEGA (https://www.vegahub.eu/)

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic properties of chemical substances.

emilio.benfenati@marionegri.it

2.General information

2.1.Date of QMRF:

30-05-2018

2.2.QMRF author(s) and contact details:

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri

2, 20156 Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/

[2] Azadi Golbamaki IRCCS-Istituto di Ricerche Farmacologiche Mario Negri Via La Masa 19,

20156 Milano, Italy azadi.golbamaki@marionegri.it https://www.marionegri.it/

[3] Kristijan Vukovic IRCCS-Istituto di Ricerche Farmacologiche Mario Negri Via La Masa 19, 20156 Milano, Italy kristijan.vukovic@marionegri.it <u>https://www.marionegri.it/</u>

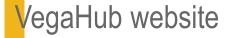
- The complete PDF report contains several relevant information to understand and assess the provided prediction, to be used also as supporting material for regulatory use of the predictions.
- QSAR predictions should not be used with a "black box" approach, they should be analyzed and understood – also to be able to compare and use multiple models for the same property, for instance using mechanistic (rules/fragments) and statistical based models.

The reports make available information to interpret results, such as:

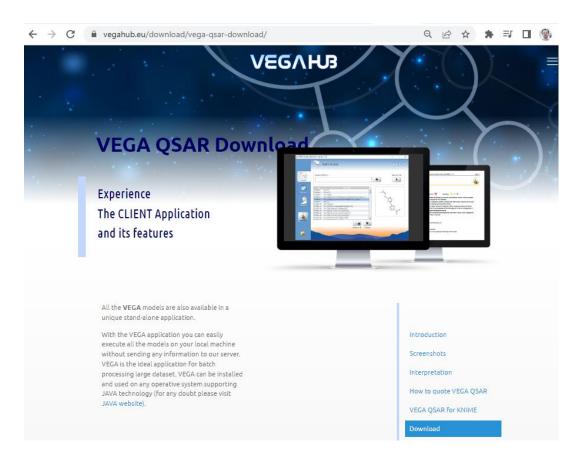
- **Applicability Domain** final assessment, coming from different sub-indices, so to understand possible causes for a low reliable prediction
- **Similar molecules** to the target compounds, available in the model's dataset with experimental value available (also for read-across approaches)
- Explanation of rules/fragments found in the target molecule

- **30 new models** have been implemented (action B.1)
- These models were previously developed, but not available within VEGA

Group	Endpoint	Model
Human Toxicity	Acute Toxicity	Acute Toxicity (LD50) model (KNN)
Human Toxicity	Androgen receptor effect	Androgen Receptor-mediated effect (IRFMN/COMPARA)
Human Toxicity	Carcinogenicity	Carcinogenicity in male rat (CORAL)
Human Toxicity	Carcinogenicity	Carcinogenicity in female rat (CORAL)
Human Toxicity	Carcinogenicity	Carcinogenicity oral classification model (IRFMN)
Human Toxicity	Carcinogenicity	Carcinogenicity oral Slope Factor model (IRFMN)
Human Toxicity	Carcinogenicity	Carcinogenicity inhalation classification model (IRFMN)
Human Toxicity	Carcinogenicity	Carcinogenicity inhalation Slope Factor model (IRFMN)
Human Toxicity	Chromosomal aberration	Chromosomal aberration model (CORAL)
Human Toxicity	Endocrine Disruptor activity	Endocrine Disruptor activity screening (IRFMN)
Human Toxicity	LOAEL	LOAEL (CONCERT/Coral)
Human Toxicity	LOAEL	Liver LOAEL (CORAL)
Human Toxicity	Micronucleus assay	In vitro Micronucleus activity (IRFMN/VERMEER)
Human Toxicity	Micronucleus assay	In vivo Micronucleus activity (IRFMN)
Human Toxicity	Mutagenicity (ames test)	Mutagenicity (Ames test) model for aromatic amines (CONCERT/IRFMN)


Group	Endpoint	Model
Human Toxicity	NOAEL	NOAEL (CONCERT/Coral)
Human Toxicity	NOAEL	NOAEL (IRFMN/CORAL)
Human Toxicity	NOAEL	Liver NOAEL (CORAL)
Human Toxicity	Skin sensitization	Skin Sensitization model (IRFMN/JRC)
Human Toxicity	Skin sensitization	Skin Sensitization model (NCSTOX)
Human Toxicity	Skin sensitization	Skin Sensitization classification (TOXTREE)
EcoToxicity	Aquatic acute toxicity	Daphnia Magna Acute (EC50) Toxicity model (IRFMN)
EcoToxicity	Aquatic acute toxicity	Algae Acute (EC50) Toxicity model (IRFMN)
EcoToxicity	Aquatic acute toxicity	Fish Acute (LC50) Toxicity model (IRFMN)
EcoToxicity	Aquatic chronic toxicity	Daphnia Magna Chronic (NOEC) Toxicity model (IRFMN)
EcoToxicity	Aquatic chronic toxicity	Algae Chronic (NOEC) Toxicity model (IRFMN)
EcoToxicity	BCF	BCF model (Arnot-Gobas)
Fate & distribution	Persistence (sediment)	Persistence (sediment) quantitative model (IRFMN)
Human PBPK	Aromatase activity	Aromatase activity model (TOX21)
Human PBPK	Aromatase activity	Aromatase activity model (IRFMN)

- **12 new models** have been developed and implemented (action B.2)
- Taking advantage of the new tools and of the new data available, we developed a series of new models, for endpoints of specific interest for the REACH.
- The 12 models with best performances have been implemented in VEGA.
- Evaluation of models made also using ECHA data
- Multiple models for the same endpoint developed, adopting different approaches (statistical / fragment-based)


Group	Endpoint	Model
Human Toxicity	Skin sensitization	Skin Sensitization (CONCERT/Kode)
Human Toxicity	Skin sensitization	Skin Sensitization (CONCERT/SarPy)
Human Toxicity	Skin irritation	Skin Irritation (CONCERT/Kode)
Human Toxicity	Skin irritation	Skin Irritation (CONCERT/Coral)
Human Toxicity	Skin irritation	Skin Irritation model (CONCERT/SarPy)
Human Toxicity	Eye irritation	Eye Irritation (CONCERT/Kode)
Human Toxicity	Eye irritation	Eye Irritation (CONCERT/KNN)
Human Toxicity	Eye irritation	Eye Irritation (CONCERT/SarPy)
EcoToxicity	Terrestrial acute toxicity	Earthworm Toxicity (CONCERT)
Phys-Chem properties	Melting point	Melting Point (CONCERT/Kode)
Phys-Chem properties	Melting point	Melting Point (CONCERT/KNN)
Phys-Chem properties	Vapour pressure	Vapour Pressure (CONCERT/Kode)

All models available in the latest version (1.2.3) of VEGA:

https://www.vegahub.eu/download/vega-qsar-download/

THANK YOU

