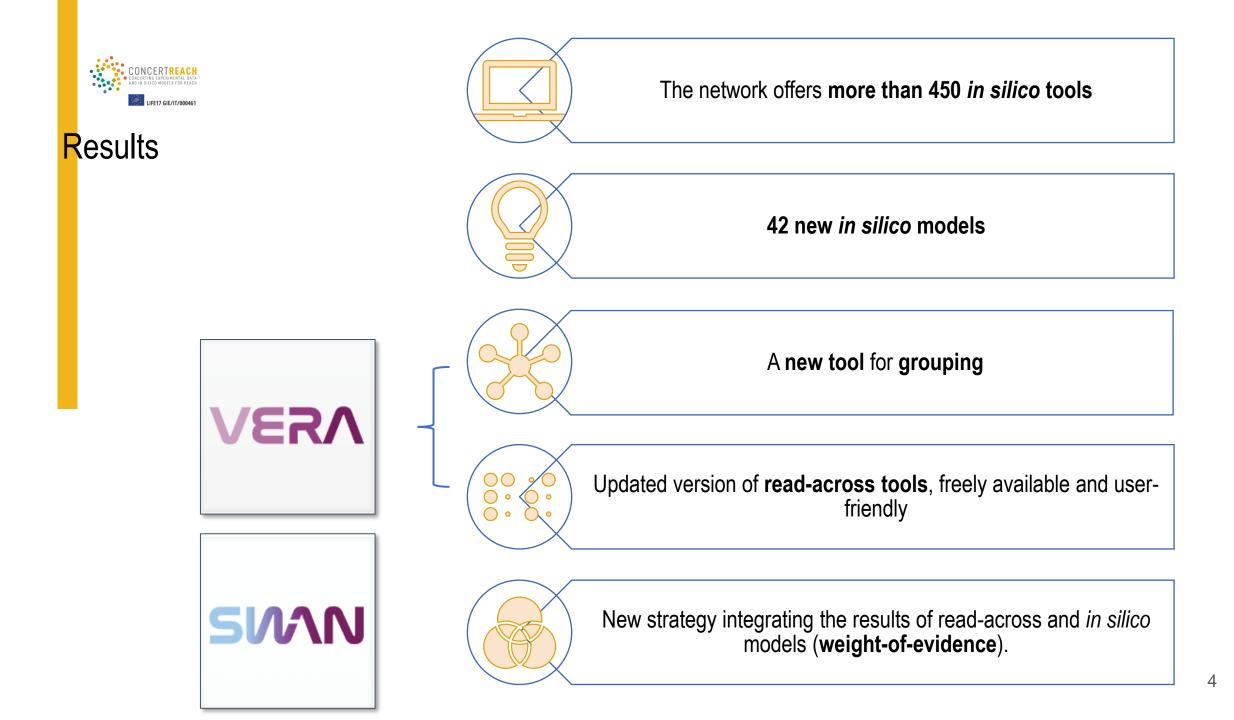
EU Life CONCERT REACH Gateway - course

09/06/2023, QSAR2023 Nelly Giuseppa Raitano

THE PROJECT

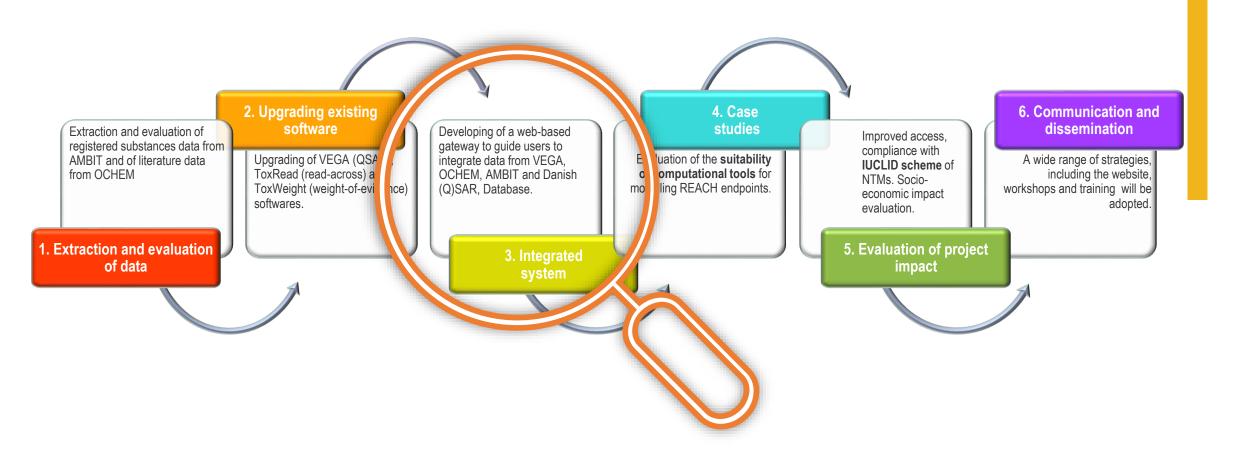
Associated Beneficiaries

Support



THE PROJECT Sept 2018 - June 2023

Evaluate the **potential impact** of CS in the EU by exp + *in silico* **A big network** of systems offering nontesting methods (NTM) useful both for authorities and industries.



PROJECT ACTIVITIES

110 (Q)SAR freely available models for regulatory purposes.

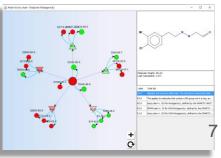
Different areas:

-Human toxicity

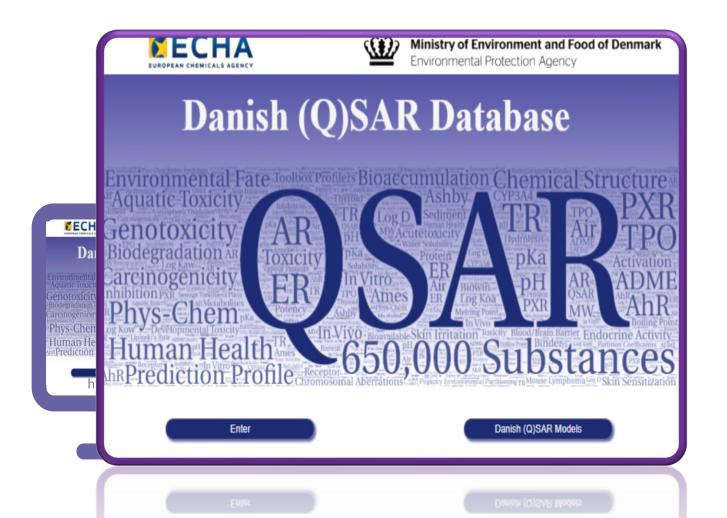
-Environmental

-Toxicokinetics

-Physico-chemical


-Eco-toxicity

VEGA



Reproducible **read-across evaluation** for 25 endpoints showing **similar compounds** and **SAs** in common between chemicals.

TOXREAD

DQ DATABASE

Estimates for more than 650,000 substances obtained with more than 200 (Q)SARs from free and commercial platforms.

DQ MODELS

New portal to access some of the models of the database directly, also for new substances.

Downloadable QPRF report is generated.

Home + Database + Models +

Welcome to OCHEM! Your possible actions

Explore OCHEM data Search chemical and biological data experimentally measured, published and exposed to public access by our users. You can also upload your data.

Create QSAR models

Build QSAR models for predictions of chemical properties. The models can be based on the experimental data published in our database.

Run predictions Apply one of the available models to predict property

you are interested in for your set of compounds.

Screen compounds with ToxAlerts

Screen your compound libraries against structural alerts for such endpoints as mutagenicity, skin sensitization, aqueous toxicity, etc.

Optimise your molecules

Optimise different properties for your molecules (e.g., reduce their toxicity or improve their ADME properties) using the state-of-the art MolOptimiser utility based on matched molecular pairs

Tutorials Check our video tutorials to know more about the OCHEM features.

Our acknowledgements

Check out the properties available on OCHEM

OCHEM contains 3345610 records for 689 properties (with at least 50 records) collected from 15083 sources

Online chemical database

search chemical and biological data supervisedatly manufed, published and exposed to public access by satisfies. You can also proved over calco Cliefs and the properties analytic on CORDI CORDIV andress 154100 records to 100 properties (and at land 50 records) collected than 15420 record Motification Control Log Corporation (Log Control Log Control Lo

Sharar FA Human IA

Dis LogiC50 LogPl

CYP450 modulation

ow.do

6on Time worke CounterAut

oility Kinetic

The LOLE Generge

a (smiles as ob. cond.

entry (4) log* Deuter/Value

Koo BCF CHEL

AND A PROPERTY AND A PROPERTY AND A

nge entropy

 Melting Point
 logPow
 logBB
 LogL(water)
 LogD
 logPI(+)

 Water solubility
 LogL(blood)
 LogL(oil)
 ER
 Cbrain/Cplasma
 IC50
 Papp(Caco-2)

 Papp(MDCK)
 Oral absorption
 LIC 50
 Papp ratio(Caco-2)

 Plasma protein binding
 Papp ratio(MDCK-mdr1)
 pIC50
 %Human FA
 Human IA

 Human FA
 fraction unbound (fu)
 fraction ionized (fi)
 pKa
 VDss
 LogIC50
 LogPI

 BBB permeability (qualitative)
 LogKoa
 LogRBA
 CYP450
 modulation

 CYP450 reaction
 Vapor Pressure
 EC50 aquatic
 NOEC aquatic

 LOEC aquatic
 IC50 aquatic
 Log(IGC50-1)
 LEL

 Henry's law constant
 EC50 EROD induction
 LC 50
 Boiling Point
 LD50 dermal

 LD50 oral
 LC50 temestrial
 AMES
 LD50
 Bedistribution

Water solubility Kinetic Papp(PAMPA) IC50 CYP450 Inhibition Ki CYP450 logK' hsa Dissipation half-life DT50 Freundlich coefficient Kr BMF

 Atmospheric OH Rate Constant
 Ki
 TDLo
 LDLo
 Cancerogen
 Anti-inflammatory activity

 Methanol solubility
 LogLD50
 MIC
 Retention Time
 Surface tension
 Cblood/Cair(Human)

 Cfati/Cair(Rat)
 Chrain/Cair(Rat)
 Cliver/Cair(Rat)
 Cmusole/Cair(Rat)
 IC50
 PDE4
 % inhibition PDE4

IC50 inhibition Density pKa (smiles as ob. cond.) DMSO Solubility Iog Kb IogK0 IogLOAEL hERG K+ Channel Blocking (IC50) 5-HT28 (Ki) LogKoc BCF CHSEL % inhibition hERG, K+ Channel Blocking hERG K+ Channel Blocking (Ki) IogP Chloroform Water 5-HT2C (Ki) 5-HT2b (Kb) PgP substrate 5-HT2A (Ki) D2R (Ki) at adrenergic receptor (Ki)

The OCHEM package offers a database of molecules and their ADMET properties.

OCHEM contains more than **1 million** experimental records for about 499 properties collected from 12428 sources

Our acknowledgeme

Union xus
 Check our video futorials to know more about 1
 OCHEM features.

Lings and Antipic from Tranks

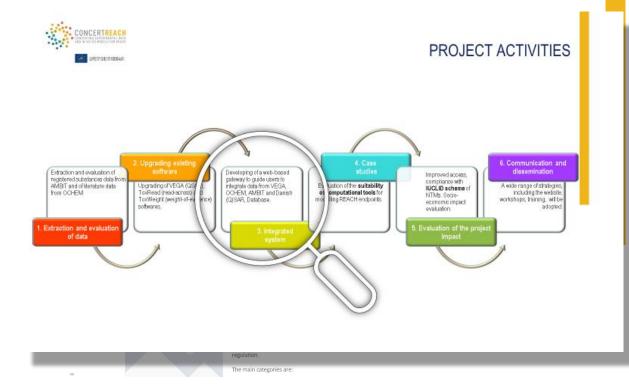
ICS0 Initialition Density pKa (smiles as ob. cond.) DMSO Solubility realities realities indicated in the test of test of the test of test

Contract LogLD50 MIC Relation Trie Suface branch contractions

CONCERTREACH CONCERTING EXPERIMENTAL DATA AND IN SILICO MODELS FOR REACH LIFE17 GIE/IT/000461 Admin • Help •

The AMBIT system consists of a database including more than **450.000 chemical** structures and REACH data on **14.570** substances

mbit @cefic LRO Enhanced functions * Search • Assessments * Import • LRI AMBIT2 Read Across tool - new version! Chemical substance database with read across workflow . IUCLID6 support, featuring OpenFoodToxData and VEGA integration Simple search Enter chemical name, identifiers, SMILES, InChI formaldehyde Search Advanced: Structure search | Search substances by identifiers | Search substances by endpoint data | Free text search ambit 🕸 Legal notice: The LRI AMBIT - IUCLID tool is loaded with non-confidential REACH data supplied by ECHA. The legal notice from the ECHA dissemination website http://echa.europa.eu/web/guest/legal-notice#registration applies to the AMBIT users In addition, Cefic disclaims any liability of whatsoever nature either direct or indirect regarding the use of the AMBIT-IUCLID tool or information / data contained in it. IdeaConsult is a contractor of Cefic developing and hosting the AMBIT-IUCLID tool. Some data used may have been provided by Cefic. IdeaConsult has acted solely on the liability of whatsoever nature, direct or indirect, regarding the use of any information/data by the AMBIT-IUCLID tool. IdeaConsult shall not have any liability of whatsoever n http: IUCLID tool



0

The GATEWAY

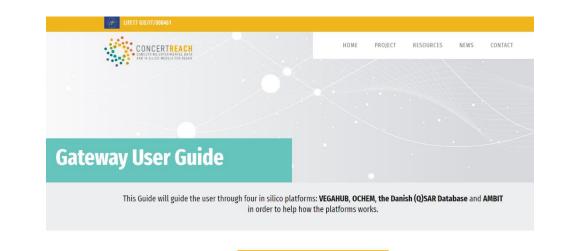
CONCERT REACH project offers the possibility to integrate, in a unique network, different systems of freely available NTMs for REACH. This "gateway" will guide the user through four in silico platforms: VECAHUB, OCHEM, the Danish (0)SAR Database and AMBIT in order to help in evaluating chemical substances by the application of more than 300 different models and the availability of more than 450.000 chemical structures and REACH dataset of 14.570 substances.

The "gateway" reports all the predictive software available in the four platforms relative to REACH endpoints.

However, please consider that we cannot guarantee that they are correct and usable for the REACH legislation. Additionally, if industry wants to use the result from a certain model, it has to verify if this is legally legitimate. For certain very specific endpoints we have reported models that may have been developed using more general data. These models may not perfectly adhere to the endpoint.

https://www.life-concertreach.eu/results/

0


The GATEWAY

CONCERT REACH project offers the possibility to integrate, in a unique network, different systems of freely available NTMs for REACH. This "gateway" will guide the user through four in silico platforms: VEGARUB, OCHEM, the Danish (Q)SAR Database and AMBIT in order to help in evaluating chemical substances by the application of more than 300 different models and the availability of more than 450.000 chemical structures and REACH dataset of 14.570 substances.

The "gateway" reports all the predictive software available in the four platforms relative to REACH endpoints.

However, please consider that we cannot guarantee that they are correct and usable for the REACH legislation. Additionally, if industry wants to use the result from a certain model, it has to verify if this is legally legitimate. For certain very specific endpoints we have reported models that may have been developed using more general data. These models may not perfectly adhere to the endpoint.

GUIDE TO THE USE OF THE GATEWAY

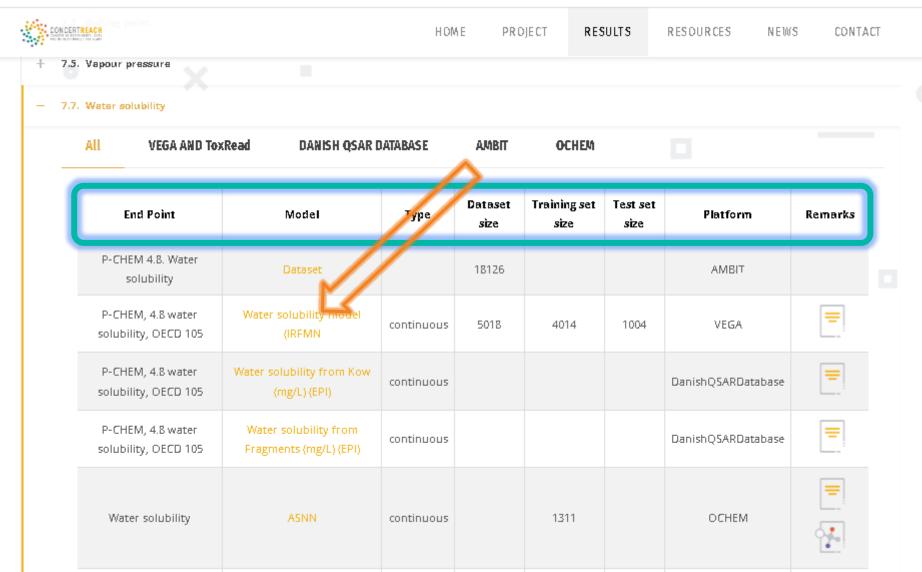
1. REACH ENDPOINTS

The main categories are:

According to his/her needs, the user can filter the models by the endpoints list, as in the REACH regulation.

https://www.life-concertreach.eu/results/

The GATEWAY


	CONCERTREACH Instrumentation interviewe	HOME	PROJECT	RESULTS	RESOURCES	NEWS	CONTACT	
	REACH ENDPOINTS	_						
	⁷ PHYSICOCHEMICAL PROPERTIES			,	to their ne		user can filter the models by t	he
	+ 7.2. Melting/freezing point			endpoints	list, as in th	ne REA	CH regulation.	
	+ 7.3. Boiling point						OPERTIES	
	+ 7.5. Vapour pressure			8. TOXIC	OLOGICAL	INFOF	RMATION	
0	+ 7.7. Water solubility + 7.8. Partition coefficient n-oc anol/water			9. ECOTC	DXICOLOG	ICAL IN	IFORMATION	

2) SELECTION OF THE SUITABLE MODEL

https://www.life-concertreach.eu/results/

3) **PREDICTING**

Once selected the model of interest, click on the link present in the "model" column; you will be redirected to the access page of the models.

https://www.life-concertreach.eu/results/

3) PREDICTING

Once selected the model of interest, click on the link present in the "model" column; you will be redirected to the access page of the models.

https://www.life-concertreach.eu/results/

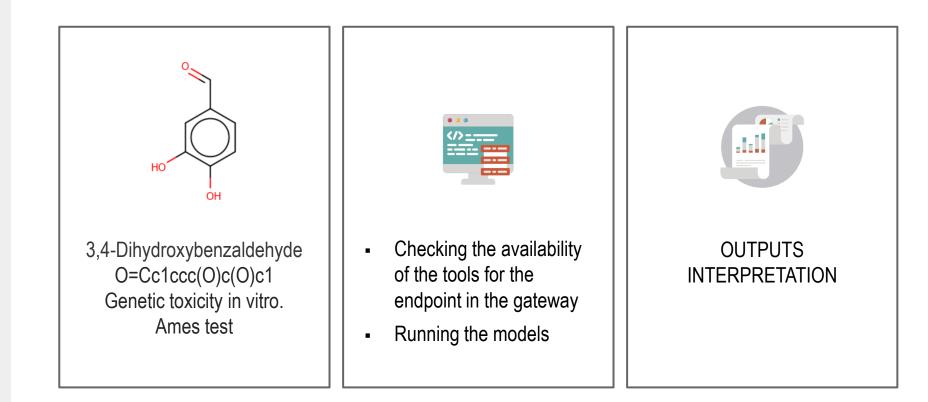
4) INTERPRETATION OF THE RESULTS

The user can consult all the available documentation of the *in silico* tools in the dedicated section.

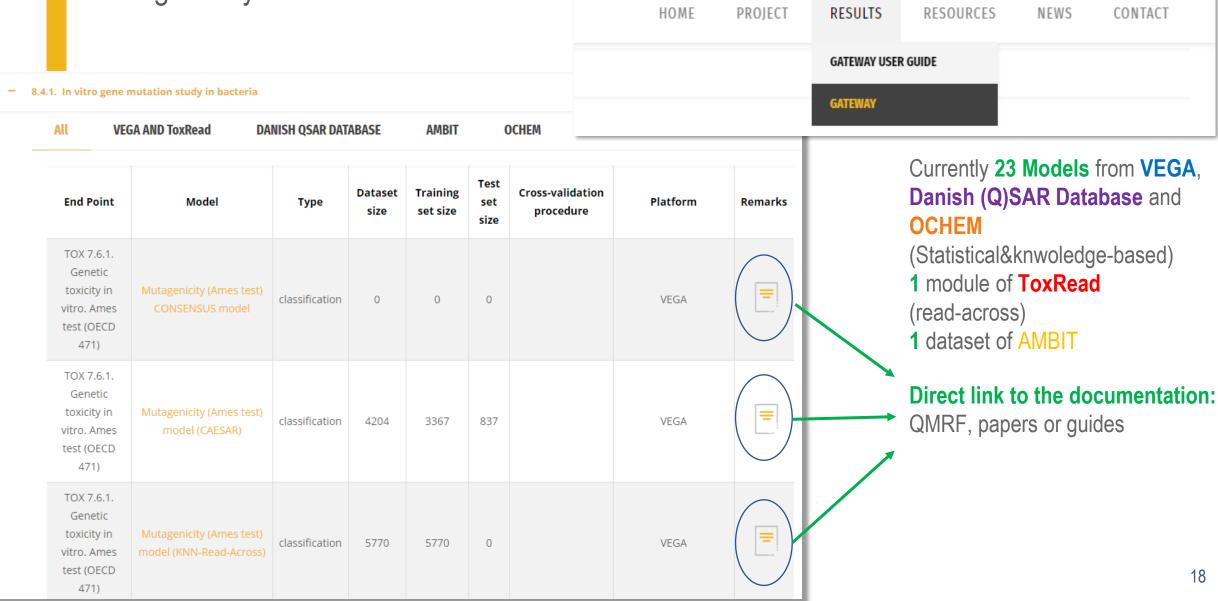
Environment International Volume 131, October 2019, 105060

Review article

Integrating *in silico* models and readacross methods for predicting toxicity of chemicals: A step-wise strategy


Emilio Benfenati ^a 은 쩓, Qasim Chaudhry ^b, Giuseppina Gini ^c, Jean Lou Dorne ^d

Show more


~ · · · · · · ·

Target molecule Tools Assessment

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway

All VEGA AND	ToxRead DANISH QS/	AR DATABASE	AMBIT	OCHE	M				GATEWAY	
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross- validation procedure	Platform	Remarks	VEGA	
TOX 7.6.1. Genetic toxicity in vitro	Mutagenicity	reproducible read-across	6060				VEGA	=	4 individual models + 1 consens	US
1OX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) CONSENSUS model	classification	O	D	D		VEGA		CAESAR - Hybrid model (statistic	cal
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (CAESAR)	classification	4204	3367	837		VEGA	=	 knowledge-based) KNN-Read-Across - read-across 	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (KNN-Read-Across)	classification	5770	5770	O		VEGA	=	model ISS - knowledge-based structural 	al
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (ISS)	classification	670	670	D		VEGA		alerts (Benigni-Bossa rule-base)	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (SarPy-IRFMN) (version 1.0.8)	classification	4204	3367	837		VEGA	=	 SarPy-IRFMN - statistical structu alerts 	ıal

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway _____

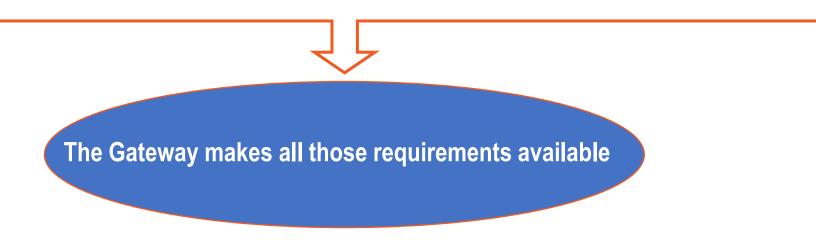
All VEGA AND	ToxRead DANISH QS	AR DATABASE	AMBIT	OCHEM	A				GATEWAY	
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross- validation procedure	Platform	Remarks	TexDeed 1 mod	
TOX 7.6.1. Genetic toxicity in vitro	Mutagenicity	reproducible read-across	6060				VEGA		ToxRead - 1 modu Dataset = 6060 substance	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) CONSENSUS model	classification	0	D	D		VEGA		public data	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (CAESAR)	classification	4204	3367	837		VEGA	—	4 different ruleseISS (knowledge-based)	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (KNN-Read-Across)	classification	5770	5770	0		VEGA		alerts)SARpy (statistical struct	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (ISS)	classification	670	670	0		VEGA		 CSR4 (statistical structu IRFMN (knowledge-bas) 	
TOX 7.6.1. Genetic toxicity in vitro. Ames test (OECD 471)	Mutagenicity (Ames test) model (SarPy-IRFMN) (version 1.0.8)	classification	4204	3367	837		VEGA	=	alerts)	

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway

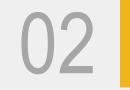
	0 ,						HOME	PROJECT	RESULTS RESOURCES NEWS CONTACT	
.1. In vitro g	ene mutation study in bacteria								GATEWAY USER GUIDE	
All	VEGA AND ToxRead DA	NISH QSAR DA	IABASE	AMBIT	(CHEM			GATEWAY	
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross-validation procedure	Platform	Remarks	Danish (Q)SAR Database 15 statistical models and 2 knowledg	IQ-
Ames test (OECD 471)	Bacterial reverse mutation test (Ames test in S. typhimurium in vitro) (CASE Ultra)	classification		4102		5 times 2-fold external crossvalidation	DanishQSARDatabase	=	based alert profilers	0
Ames test (OECD 471)	Bacterial reverse mutation test (Ames test in S. typhimurium in vitro) (Leadscope)	classification		4102		5 times 2-fold external crossvalidation	DanishQSARDatabase	=	Bacterial reverse mutation test (Ames test in S typhimurium in vitro)	
Ames test (OECD 471)	Bacterial reverse mutation test (Amesitest in S. typhimurium in vitro) (SciQSAR)	classification		4102		5 times 2-fold external crossvalidation	DanishQSARDatabase		 Direct acting Ames mutagens (without S9) Base pair Ames mutagens Frame shift Ames mutagens 	
Ames test (OECD 471)	Direct acting Ames mutagens (without S9) – ONLY use for Ames POS_IN (CASE Ultra)	classification		388		5 times 2-fold external crossvalidation	DanishQSARDatabase		 Potent Ames mutagens, reversions ≥ 10 times controls 	
Amesitest (OECD 471)	Direct acting Ames mutagens (without S9) – ONLY use for Ames POS_IN (Leadscope)	classification		388		5 times 2-fold external crossvalidation	DanishQSARDatabase		 Profilers (OECD QSAR Toolbox V.4.2) DNA alerts for AMES by OASIS, alerts in pare 	ent
Amesitest (OECD 471)	Direct acting Ames mutagens (without S9) – ONLY use for Ames POS_IN (SciQSAR)	classification		388		5 times 2-fold external crossvalidation	DanishQSARDatabase	=	onlyIn vitro mutagenicity (Ames test) alerts by ISS	
Ames test	Base pair Ames mutagens -					5 times 2-fold			alerts in parent only	

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway

1. In vitro gene mul	AND ToxRe		IISH QSAR DAT/	ABASE AM	IBIT OC	CHEM			GATEWAY			
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross-validation procedure	Platform	Remarks		0(СНЕМ	
Ames test (OECD 471}	ASNN	Classification		4361	2181		OCHEM		1 statistical model & ToxAlert ma		ert match	
All VEGA A	ND ToxRea	d DANIS	SH QSAR DATAI	BASE AMB	ГГ ОСН	EM			1			

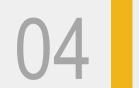

Models for in vitro gene mutation in bacteria

How to select the appropriate model(s) for my substance? <u>A priori selection is generally not possible</u>


- However, **experience in using the models** might suggest which could give more reliable results for certain types of substances (e.g., industrial chemicals, active substances, etc.)
- Information on **compliance** of the target molecule **with the applicability domain of the model**
- **Comparison with similar molecules** with available experimental results
- It is generally required to use multiple and different models for evaluating the same endpoint

Expert analysis of the results and supporting information is needed

01 Running VEGA models & ToxRead module and results analysis



02 Using Danish (Q)SAR Database and results analysis

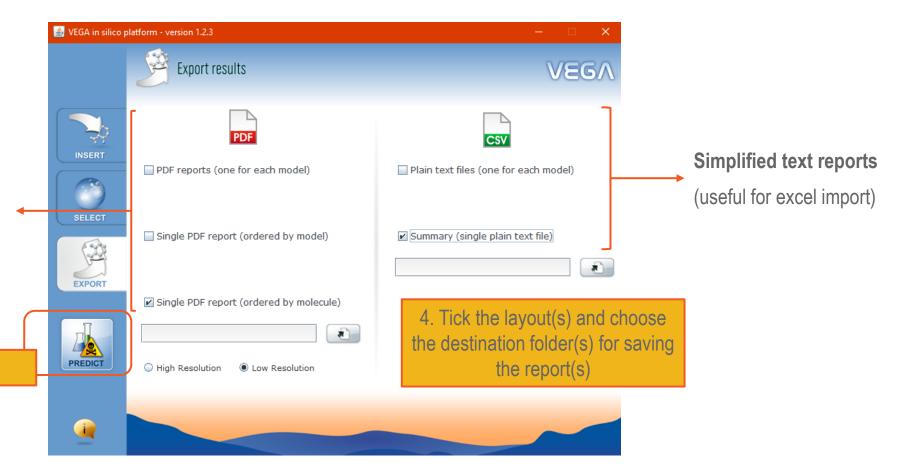
TABLE OF CONTENTS

Running OCHEM model & ToxAlerts and results analysis

Using AMBIT database and results analysis

VEGA: running predictions

GA in silico platfo	rm - version 1.2.3 — 🗌 🗙
	Select models VEGA
V	Filter models: All available endpoints
ELECT	Mutagenicity (Ames test) Select all models Mutagenicity (Ames test) model (CAESAR) - v. 2.1.14 Mutagenicity (Ames test) model (ISS) - v. 1.0.3 Mutagenicity (Ames test) model (ISS) - v. 1.0.3 Mutagenicity (Ames test) model (SarPy-IRFMN) - v. 1.0.8 Mutagenicity (Ames test) model (KNN-Read-Across) - v. 1.0.1 Mutagenicity (Ames test) model for aromatic amines (CONCERT/IRFMN) - v. 1.0.0 Mutagenicity (Ames test) CONSENSUS model - v. 1.0.4
EDICT	Developmental toxicity Select all models 3. Select the model(s)


VEGA: running predictions

Full PDF reports:

- prediction(s) results
- applicability domain
- experimental data of the target (if any)
- most similar substances
- other supporting info (if any)

5. Click on «Predict»

VEGA: running predictions

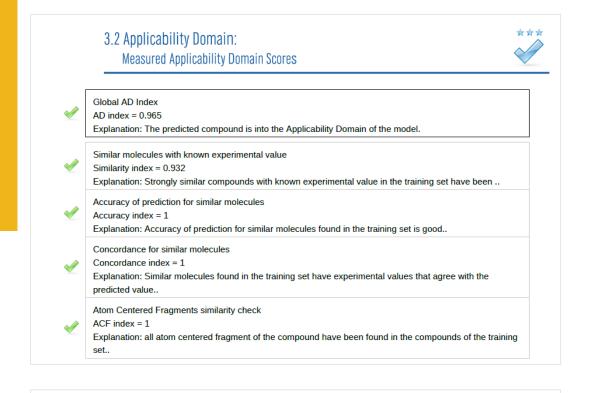
About VEGA

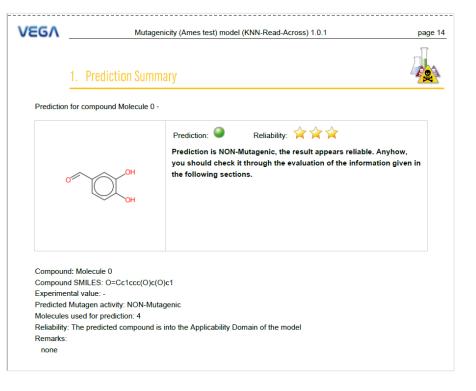
	🎒 VEGA in silico pl	atform - version 1.2.3	- 🗆 🗙
		Insert chemicals	VEGA
	INSERT	Insert SMILES:	Import File
	SELECT	ID SMILES	
	EXPORT		
Abour VEGA – X Version: 12.3 (build date: 13/00/002)) Calculation core version: 13.18 The application is intelessed under the QUU GPU-3 lisense	PREDICT		
The user's pude is available (POF document)		Delete All Delet	te
MARIO NEGRI Chemoinformatics			

VEGA: result analysis

				Mutagenicity	(Ames test) model (CAESAR) 2.1.14	page 2
			1. Prediction	Summary		
	Prediction:		VEGA		Mutagenicity (Ames test) model (SarPy-IRFMN) 1.0.8	page 10
ОН	Prediction is NON-Mutagenic with a consensus score of 0.675 on 4 models.			1. Predictio	n Summary	• Stars for
		ď	Prediction		Mutagenicity (Ames test) model (KNN-Read-	
~ тон					1. Prediction Summary	nary c
				Prediction	VEGA Mutagenicity (Ames	test) model (ISS) 1.0.3 page
Compound: Molecule 0 Compound SMILES: O=Cc1ccc(O)c(O)c1		Compound Compound Experimen Predicted N Structural /			1. Prediction Summary	
Used models: 4		Reliability: Remarks:	Compour	(Prediction for compound Molecule 0 -	
Predicted Consensus Mutagen activity: NON-Mutagenic Mutagenic Score: 0.05 Non-Mutagenic Score: 0.675 Model Caesar assessment: NON-Mutagenic (GOOD reliability) Model ISS assessment: Mutagenic (LOW reliability) Model SarPy assessment: Possible NON-Mutagenic (GOOD reliability) Model KNN assessment: NON-Mutagenic (GOOD reliability) Remarks:			Compour Compour Experime Predictec No. alerts Structura Reliability Remarks none	Compoun Compoun Experimei Predicted Molecules Reliability	OH OH OH OH OH OH OH OH OH OH OH OH OH O	agenic, but the result may be not reliable. A check of the n in the following section should be done, paying particular ollowing issues: es found in the training set have experimental values that e predicted value tered fragments of the compound have not been found in of the training set or are rare fragments (1
none				Remarks: none	Compound: Molecule 0 Compound SMILES: O=Cc1ccc(Q)c(Q)c1 Experimental value: - Producted Mutagen activity: Mutagenic Structural Alerts: SA11 Simple aldehyde	

1000


The reliability of the prediction is based on an automated check of the molecule compliance with the applicability domain of the model.


Reliability: The predicted compound is outside the Applicability Domain of the model

Remarks:

VEGA: result analysis

Applicability Domain Index (ADI) ranges from 0 (not in AD) to 1 (in AD) The ADI is calculated based on other indices, each one taking into account a particular issue of the applicability domain (AD)

Symbols explanation:

The feature has a good assessment, model is reliable regarding this aspect.

- The feature has a non optimal assessment, this aspect should be reviewed by an expert.
- The feature has a bad assessment, model is not reliable regarding this aspect.

Number of considered similar molecules and number and type of indexes are **model dependent**

IEE17 CIE/IT/00046

VEGA: example of the automated AD/reliability evaluation

		Prediction:		VEG/	Λ	Mutagenicity (Ames test) model (KNN-Read-Across) 1.0.1	page 15
	O OH	Prediction is NON-Mutagenic, the result appears reliable. Anyhow, you should check it through the evaluation of the information given in the following sections.				cability Domain: r Compounds, with Predicted and Experimental Values	***
Compo	Sund: Molecule 0			,		Compound #1 CAS: 121-33-5 Dataset id:873 (Training Set) SMILES: O=Cc1ccc(O)c(OC)c1 Similarity: 0.938 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
Compo Experi Predict Molecu	bund SMILES: O=Cc1ccc(O)c(O mental value: - ted Mutagen activity: NON-Muta lles used for prediction: 4 llity: The predicted compound is ks:			нс	i o .	Compound #2 CAS: 99-96-7 Dataset id:5596 (Training Set) SMILES: 0=C(0)c1ccc(0)cc1 Similarity: 0.938 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
×	Global AD Index AD index = 0.965 Explanation: The predicte	d compound is into the Applicability Domain of the model.		۵	ОСОН	Compound #3 CAS: 123-08-0 Dataset id:932 (Training Set) SMILES: 0=Cc1ccc(0)cc1 Similarity: 0.927 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
	Similar molecules with kno Similarity index = 0.932 Explanation: Strongly similarity	own experimental value lar compounds with known experimental value in the training set have been		o	\sim	Compound #4 CAS: 148-53-8 Dataset id:1548 (Training Set) SMILES: 0=Cc1cccc(OC)c1(O) Similarity: 0.926	
~	Accuracy of prediction for Accuracy index = 1 Explanation: Accuracy of	similar molecules prediction for similar molecules found in the training set is good	All the SCs are TN			Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic Compound #5	
~	Concordance for similar n Concordance index = 1 Explanation: Similar mole predicted value	nolecules cules found in the training set have experimental values that agree with the	All EXPs=prediction		OH OH	CAS: 452-86-8 Dataset id:3123 (Training Set) SMILES: Oc1ccc(cc1(O))C Similarity: 0.909 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
~	Atom Centered Fragment ACF index = 1 Explanation: all atom cent set	s similarity check ered fragment of the compound have been found in the compounds of the training			~~ ~	Compound #6 CAS: 90-02-8 Dataset id:5134 (Training Set) SMILES: O=Cc1ccccc1(O) Similarity: 0.909 Experimental value : NON-Mutagenic	
						Predicted value : NON-Mutagenic	

VEGA: result analysis

3.2 Applicability Domain: Measured Applicability Domain Scores

Global AD Index

×

AD index = 0 Explanation: The predicted compound is outside the Applicability Domain of the model.

Similar molecules with known experimental value

Similarity index = 0.861

Explanation: Strongly similar compounds with known experimental value in the training set have been ..

Accuracy of prediction for similar molecules

Accuracy index = 1

Explanation: Accuracy of prediction for similar molecules found in the training set is good..

Concordance for similar molecules

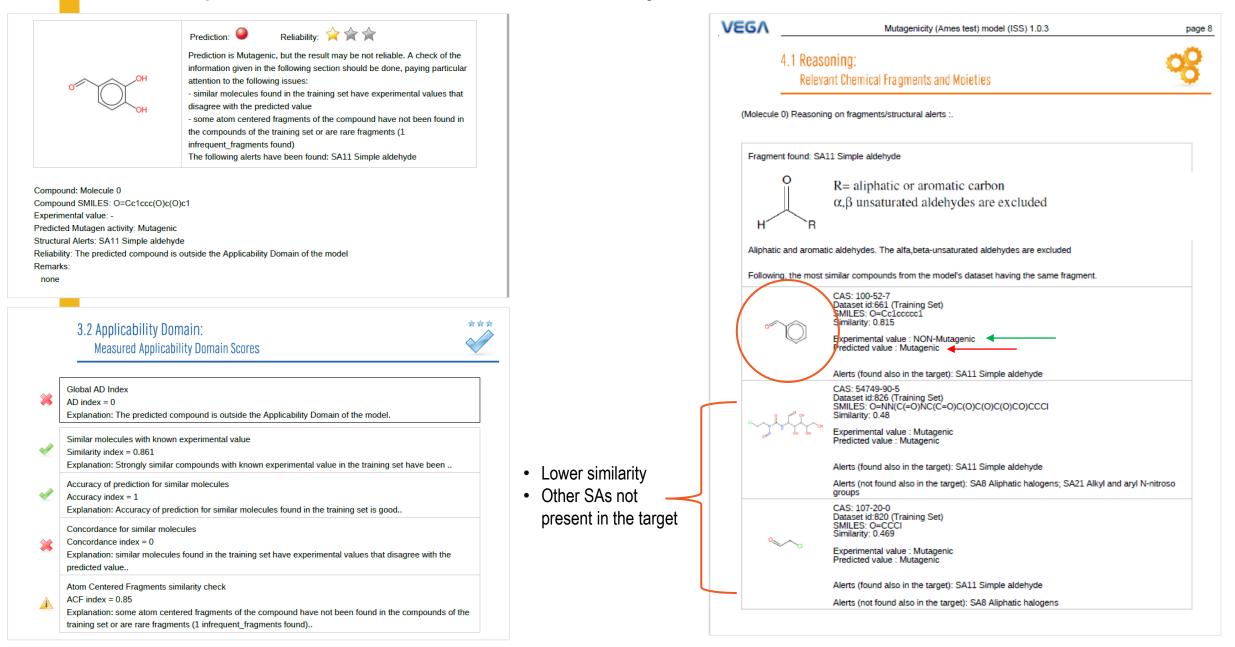
Concordance index = 0

Explanation: similar molecules found in the training set have experimental values that disagree with the predicted value..

Atom Centered Fragments similarity check

ACF index = 0.85

Explanation: some atom centered fragments of the compound have not been found in the compounds of the training set or are rare fragments (1 infrequent_fragments found)..


-	Mutagenicity (Ames test) model (ISS) 1.0.3	EGN
7	iction Summary	<u>1.</u>
	nd Molecule 0 -	Prediction for
	Prediction: 🥌 Reliability: 😭 🚔	
nould be done, paying particular have experimental values that npound have not been found in e fragments (1	 Prediction is Mutagenic, but the result may be not reliablinformation given in the following section should be done attention to the following issues: similar molecules found in the training set have experind isagree with the predicted value some atom centered fragments of the compound have the compounds of the training set or are rare fragments found) The following alerts have been found: SA11 Simple alde 	0
npound have not been found in re fragments (1	- similar molecules found in the training set have experim disagree with the predicted value - some atom centered fragments of the compound have the compounds of the training set or are rare fragments infrequent_fragments found) The following alerts have been found: SA11 Simple alde	Compound: N

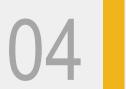
CONCERTREACH CONCERTINE EXPENSION AND IN SILICO MODELS FOR REACH

VEGA: example of the automated AD/reliability evaluation


		Prediction: 🤍 Reliability: 🔶 🊖 🚖		VEGA	Mutagenicity (Ames test) model (ISS) 1.0.3	pag
	оторон	Prediction is Mutagenic, but the result may be not reliable. A check of the information given in the following section should be done, paying particular attention to the following issues: - similar molecules found in the training set have experimental values that			3.1 Applicability Domain: Similar Compounds, with Predicted and Experimental Values	**
	ОН	disagree with the predicted value - some atom centered fragments of the compound have not been found in the compounds of the training set or are rare fragments (1 infrequent_fragments found) The following alerts have been found: SA11 Simple aldehyde		HO	Compound #1 CAS: 120-80-9 Dataset id:817 (Training Set) SMILES: Oclococc1(O) Similarity: 0.866 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
Compou Experim Predicte Structur Reliabili	· · · · · · · · · · · · · · · · · · ·	ic		но	Compound #2 CAS: 65-85-0 Dataset id:798 (Training Set) SMILES: O=C(0)c1ccccc1 Similarity: 0.856 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
none	3.2 Applicability Do Measured Applica	omain: bility Domain Scores		но	Compound #3 CAS: 123-31-9 Dataset id:673 (Training Set) SMILES: Oc1ccc(O)cc1 Similarity: 0.852 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
			-		Freuticeu value : NON-Multagenic	
*		compound is outside the Applicability Domain of the model.	-	HAL	Compound #4 CAS: 118-92-3 Dataset id:96 (Training Set) SMILES: O=C(O)c1ccccc1(N) Similarity: 0.849 Experimental value : NON-Mutagenic	
*	AD index = 0 Explanation: The predicted Similar molecules with know Similarity index = 0.861	n experimental value	-	ня	Compound #4 CAS: 118-92-3 Dataset id:96 (Training Set) SMILES: O=C(O)c1ccccc1(N) Similarity: 0.849 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic	
*	AD index = 0 Explanation: The predicted Similar molecules with know Similarity index = 0.861 Explanation: Strongly similar Accuracy of prediction for sin Accuracy index = 1	n experimental value r compounds with known experimental value in the training set have been	All the SCs are TN		Compound #4 CAS: 118-92-3 Dataset id:96 (Training Set) SMILES: O=C(O)c1ccccc1(N) Similarity: 0.849 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic Compound #5 CAS: 108-46-3 Dataset id:298 (Training Set) SMILES: Oc1cccc(O)c1 Similarity: 0.849	
*	AD index = 0 Explanation: The predicted Similar molecules with know Similarity index = 0.861 Explanation: Strongly simila Accuracy of prediction for si Accuracy index = 1 Explanation: Accuracy of pr Concordance for similar mo Concordance index = 0	In experimental value In compounds with known experimental value in the training set have been In milar molecules In ediction for similar molecules found in the training set is good	All the SCs are TN All EXPs≠prediction		Compound #4 CAS: 118-92-3 Dataset id:96 (Training Set) SMILES: O=C(O)c1ccccc1(N) Similarity: 0.849 Experimental value : NON-Mutagenic Predicted value : NON-Mutagenic Compound #5 CAS: 108-46-3 Dataset id:298 (Training Set) SMILES: Oc1cccc(O)c1	

VEGA: example of the automated AD/reliability evaluation

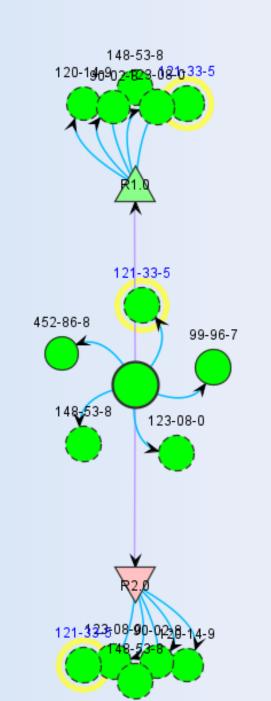
01 Running VEGA models & ToxRead module and results analysis

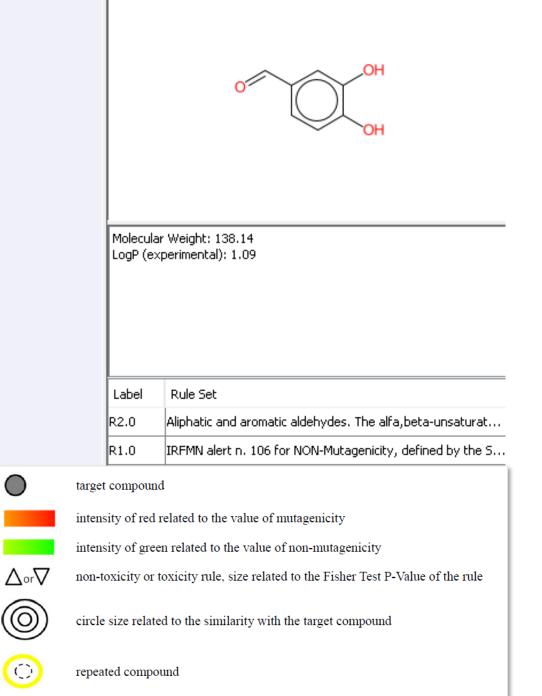


02 Using Danish (Q)SAR Database and results analysis

TABLE OF CONTENTS

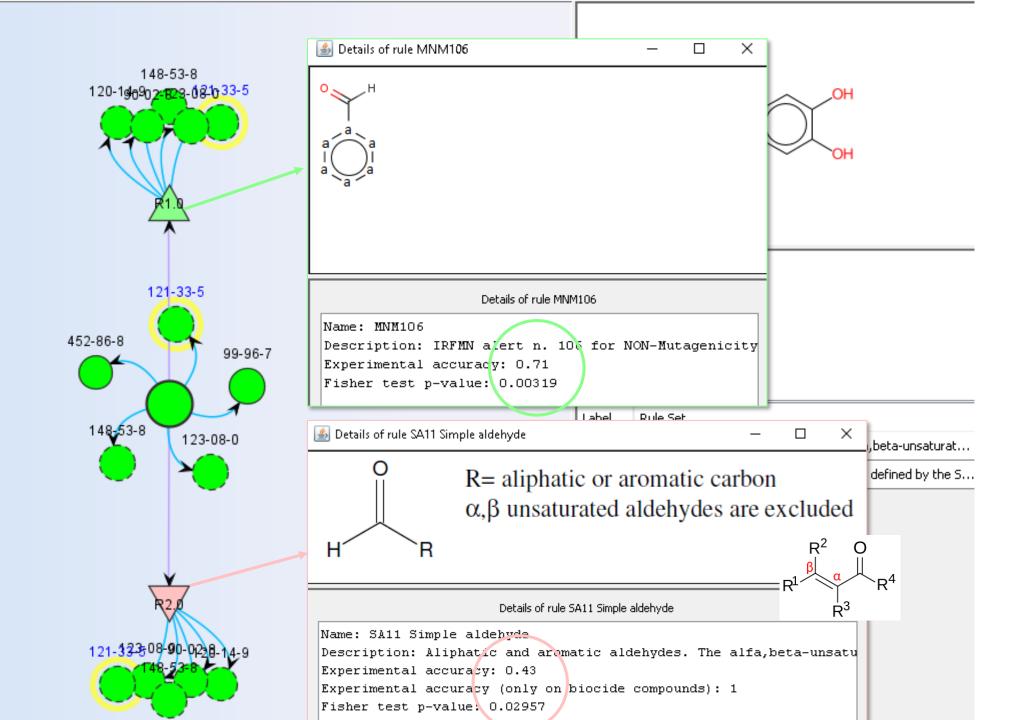
03 Running OCHEM model & ToxAlerts and results analysis

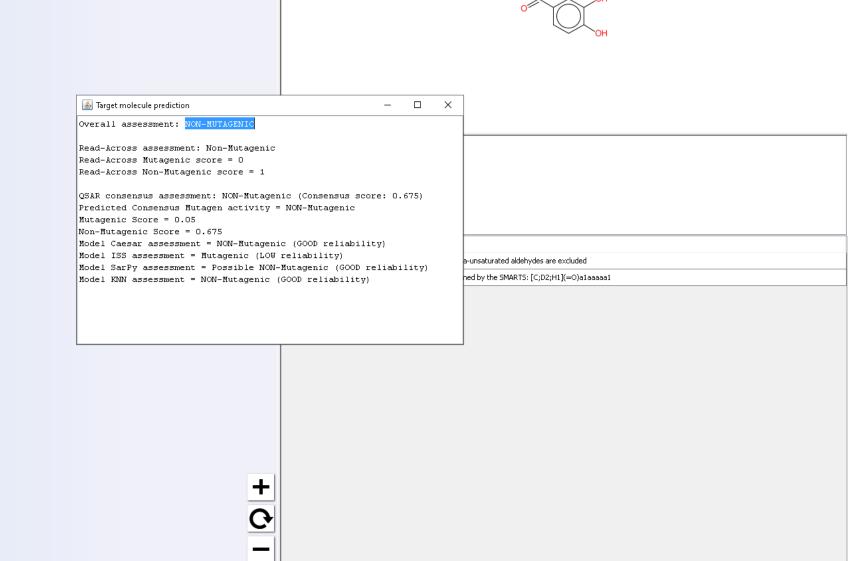



Using AMBIT database and results analysis

TOXREAD: running read-across

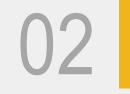
🖆 ToxRead 0.25	-		\times	LIFE17 GIE/IT/00
Insert SMILES:				
c1cc(Cl)c(Br)cc1CCNNCC=0				
Number of similar molecules: 3				
Endpoint: Mutagenicity		 	•	Dataset = 6060 substances and their public data
Run read-across				4 different rulesets:
Initializing database Database correctly initialized.			1	 ISS (46, 100% P) SARpy (205, 55% P)
				• CSR4 (238, 41% P)
Available molecules: 24523				 IRFMN (282, 57% P)
Available experimental data:				
Reproductive Toxicity (CONCERT): 1320				
Eye Irritation: 1137 Rat LD50 toxicity: 8476				
Aromatase Activity: 326				
Androgen Receptor-mediated effect: 1664				
Skin Irritation: 303			-	
In vivo micronucleus assay: 1228			Ŧ	




 \bigcirc

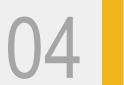
 \bigcirc

 \bigcirc


148-53-8 120-146902-128-08-0-33-5 121-33-5 452-86-8 99-96-7 148-53-8 123-08-0 121-323-08-00-0228

🕂 O 🛱 💽 🧮 🔕 🐢 💶 🥥 🗷 🚱 🛃

01 Running VEGA models & ToxRead module and results analysis



Using Danish (Q)SAR Database and results analysis

TABLE OF CONTENTS

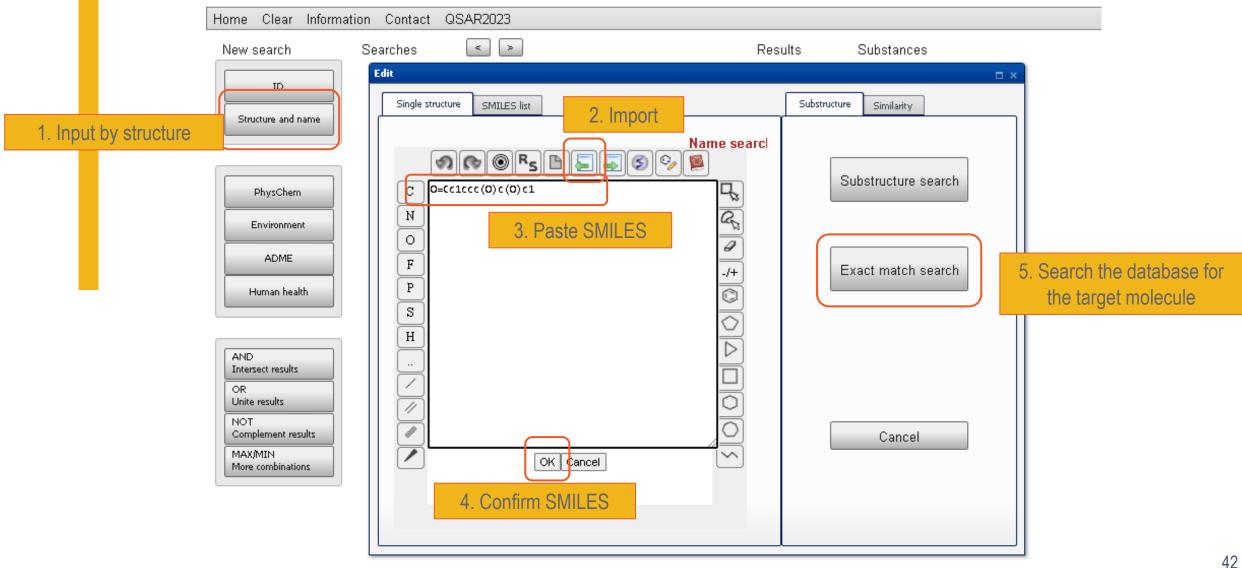
03 Running OCHEM model & ToxAlerts and results analysis

Danish (Q)SAR Database: introduction

Nordic Council of Ministers

Ministry of Environment of Denmark Environmental Protection Agency

Danish (Q)SAR Database



Danish (Q)SAR Database **can be searched** for molecules, based on available **experimental data, (Q)SAR predictions, structural alerts**, etc., for the endpoint of interest

- The results of the QSAR predictions
- Identification of similar molecules
- Stepwise approach

Danish (Q)SAR Database: gathering (Q)SAR results

Danish (Q)SAR Database

Danish (Q)SAR Database: gathering (Q)SAR results

anish (Q)SAR Datab	ase		4. Summary of the search
me Clear Information Contact QSA	AR2023		performed
ew search	< >	Result	ts Substances
1.	Exact match:		1 Exact match: : Page 1
	Exact match		
ID			Previous Next 1
			Structures 1-1 of 1
Structure and name			
			Structure Id Similarity +
PhysChem			HO
Danish (Q)SA	R Database, <u>http://qsar.food.dtu.dk</u>	Date: 24-04-2023	139-XX-X
Environment			
ADME	(Q)SAR pred	icted profile	
HEINE			
Human health Structure (as used for QSAR prediction):		
НО	\bigtriangleup		5. For each identified molecule, the
AND			(Q)SAR report can be downloaded in
Intersect results			
OR HO	· ·		.rtf format
Unite results			a tra format
NOT SMILES (1	used for QSAR prediction): c1(O)c(O)cc	(C=O)oc1	
Complement results			
MAX/MIN Registry Nur More combinations REACH EC		PubChem CID REACH EC Number	
(pre-registra	tion, by 2013) 205-377-7	(registration, 2019 or 2022)	
	stration (2022)	REACH registration cumulated minimum annual tonnage (2022)	
EU CLP Har Classification	monized	DK-EPA / DTU QSAR-based Acute Tox. 4; CLP Advisory Classification Skin Irrit. 2	
EU Biocide a		EU Pesticide active	
substances EU EFSA Br	tanical	substances	
substances	165	US TSCA (Oct. 2021)	
Tox21 (2019 Molecular Fc		ToxCast (Oct. 2021) Molecular weight (g/mole) 138.12	
Molecular Fo Chemical Na		Molecular weight (g/mole) 138.12	

Melting point, Boiling point and Vapour pressure

1

Danish (Q)SAR Database: results for in vitro gene mutation in bacteria

In vitro Genotoxicity - Bacterial Reverse Mutation Test (Ames test)

		Exp	Battery	CASE Ultra	Leadscope	SciQSAR
Ames test in S. ty	phimurium (<i>in vitr</i> o)		NEG_IN	NEG_IN	NEG_IN	NEG_OUT
*Direct Acting Mut	agens (without S9)	N/A	INC_OUT	NEG_OUT	INC_OUT	INC_OUT
*Base-Pair Ames	Mutagens	N/A	NEG_OUT	NEG_OUT	NEG_IN	INC_OUT
*Frameshift Ames	Mutagens	N/A	INC_OUT	POS_OUT	POS_IN	NEG_IN
*Potent Ames Mut 10 Times Controls	tagens, Reversions ≥ s	N/A	POS_IN	POS_IN	POS_IN	POS_IN
DTU-developed n	iodels					

* The four models (Direct Acting mutagens (without S9), Base-Pair Ames Mutagens, Frameshift Ames Mutagens, Potent Ames Mutagens) should not be used to determine if substances are Ames mutagens, but can be used for indication of mechanism or potency for cases where the main Ames model (Ames test in S. typhimurium (*in vitro*)) is POS_IN.

The target molecule was evaluated as **compliant with AD** except for SciQSAR model. The other four models should not be considered.

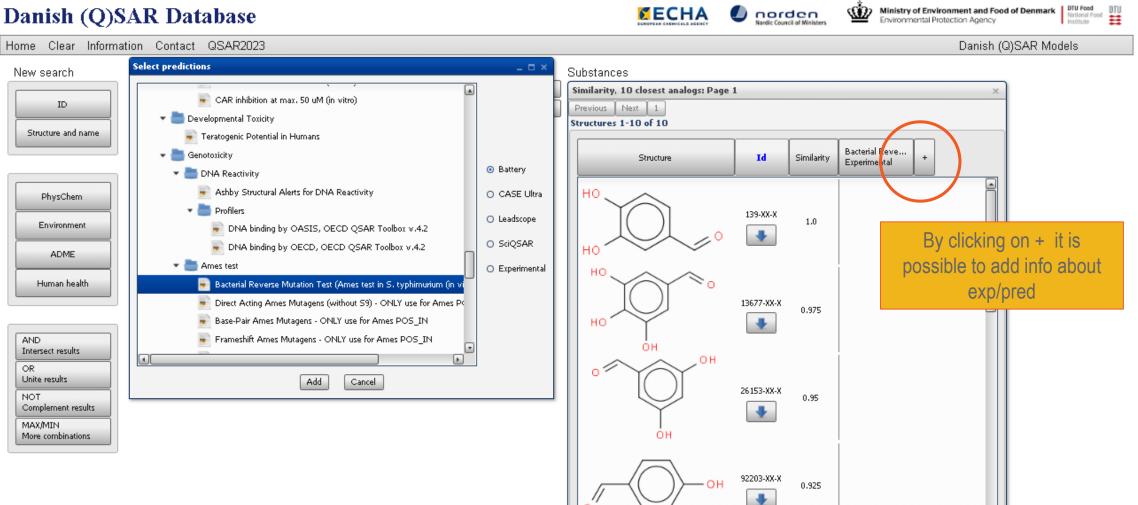
Within LIFE CONCERT REACH, results from the four VEGA models and the Consensus model have been integrated

	VEGA	Mut. / Non-mut. scores	Used models
Mutagenicity consensus	NEG	0.05 / 0.68	4
Mutagenicity (Ames) consei 1.2.4	nsus model version 1.0.2 c	ontained in VEGA version 1.1.4 w	vith calculation core version
Prediction: POS = Mutagen	ic, NEG = Non-mutagenic.		

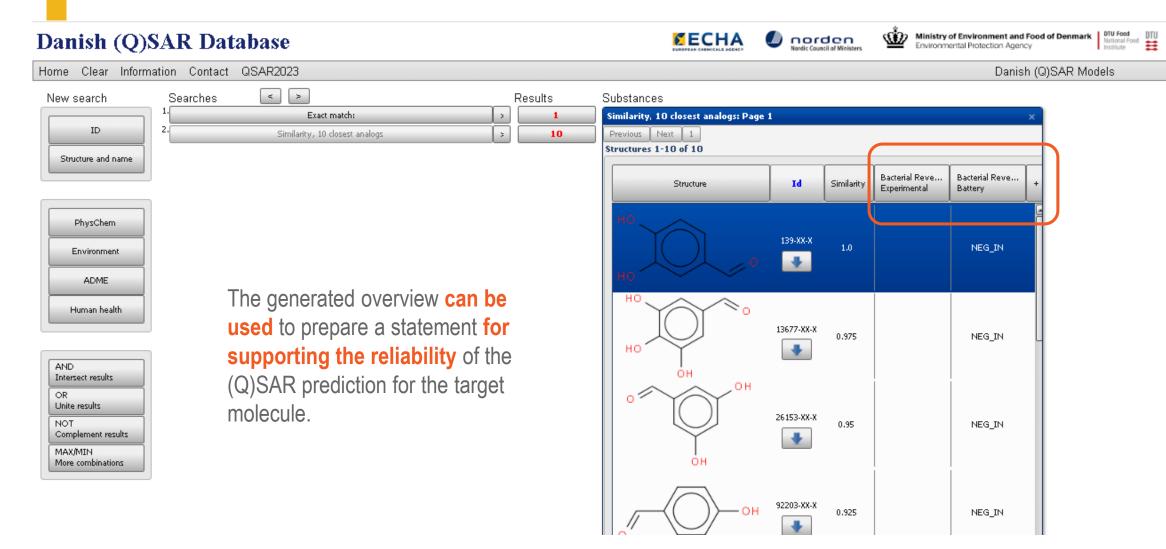
VEGA SarPy KNN ISS CAESAR SarPy KNN POS_Low NEG_Good POSS.NEG_Good NEG_Good Four individual models in mutagenicity consensus model version 1.0.2 contained in VEGA version 1.1.4 with

Four individual models in mutagenicity consensus model version 1.0.2 contained in VEGA version 1.1.4 with calculation core version 1.2.4

Structural alerts identified by two endpoint-specific profilers present in the OECD QSAR Toolbox

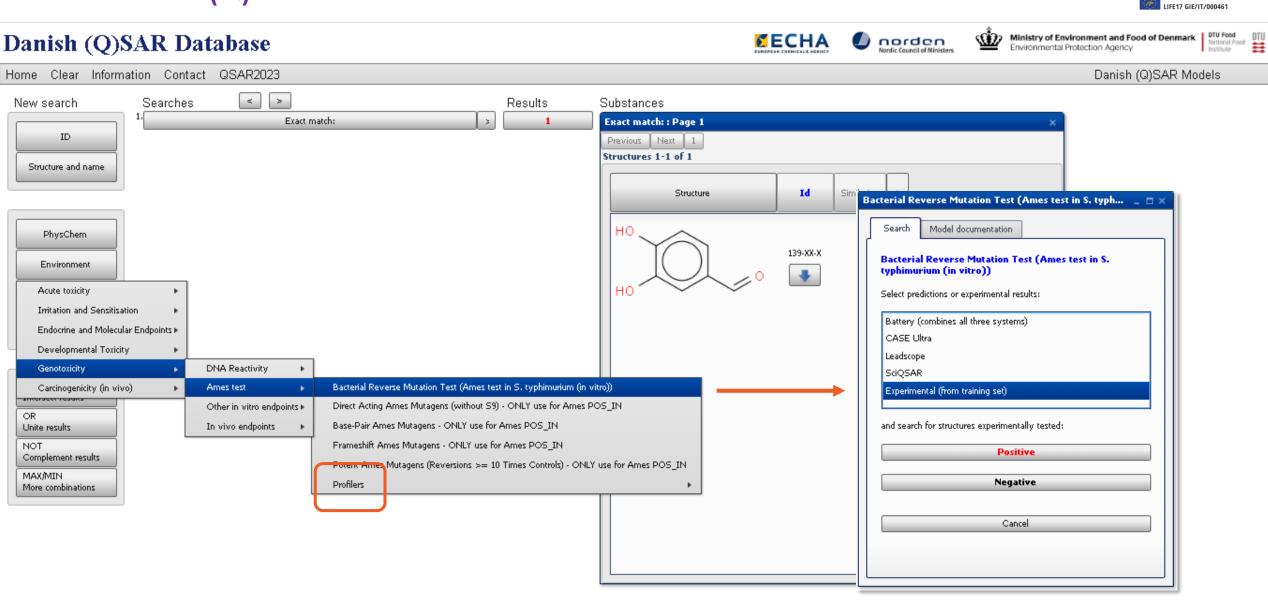

NA alerts for AMES by OASIS, al		
parent only	No alert found	
n vitro mutagenicity (Ames test) ale	erts by ISS, alerts in:	
parent only	Simple aldehyde	
DECD QSAR Toolbox v.4.2 profiler	3	

¢ Danish (Q)SAR Database Ministry of Environment and Food ECHA Norden Nardic Council of Ministers Environmental Protection Agency Home Clear Information Contact QSAR2023 Danish (C < ≻ Searches Results Substances New search Exact match: Exact match: : Page 1 2 34 ID Edit $\square \times$ Structure and name Single structure Similarity SMILES list Substructur Id Similarity + Name search The full database will be ordered by similarity to the query chemical. ୭ 🔊 🔊 🗣 🗈 🗐 🌄 🌍 🐤 🗭 PhysChem Ps. 139-XX-X С Environment Display: + Ν G. All structures ADME. O User-defined number of closest analogs: Ο ð 10 F Human health -/+ C Ρ 0 \mathbf{S} \bigcirc Similarity AND. Н \triangleright Intersect results .. OR Unite results 1 0 NOT // Complement results // \bigcirc 0 / MAX/MIN Cancel More combinations \sim


Ministry of Environment and Food of Denmark

Danish (Q)SAR Database

🚺 norden



- Stepwise approach
- Danish (Q)SAR Database can be searched for molecules, based on available experimental data, (Q)SAR predictions, structural alerts, etc., for the endpoint of interest
- For each query, a list of molecules is retrieved
- The lists can be merged, using logical operators such as AND or OR

Home Clear Information Contact QSAR2023 < > New search Searches Results Exact match: ID POS Bacterial Reverse Mutation Test (Ames test ... 2361 2 з. NEG Bacterial Reverse Mutation Test (Ames test ... 3971 2. Structure and name NO alert in P: DNA alerts for AMES by OASIS, OECD QSAR Too ... 594272 21 POS alert in P: In vitro mutagenicity (Ames test) alerts by... 185786 × 6. 1. OR 2. OR 3. 6333 PhysChem 7. 4. AND 5. AND 6. 1518 Environment ADME The target molecule (3,4-Dihydroxybenzaldehyde)- SMILES 1: 2: All molecules from the database, **experimentally positive** for Ames test Human health 3: All molecules from the database, experimentally negative for Ames test All molecules with no alerts for DNA alerts for AMES by OASIS profiler and at least one alert for In 4 to 5: vitro mutagenicity (Ames test) alerts by ISS. AND. Target + experimentally positive + experimentally negative (1, 2 and 3 combined with OR) 6: Intersect results 7: Subset of 6, including molecules with info about alerts for the 2 relevant profilers (6, 4 and 5 OR Unite results combined with AND) NOT Complement results The guery from 2 to 5 is performed in the "Human Health" section MAX/MIN More combinations

ONCERTING EXPERIMENTAL DA ND IN SILICO MODELS FOR REAI

LIFE17 GIE/IT/000461 DTU Food National Food Institute ¢ Ministry of Environment and Food of Denmark Danish (Q)SAR Database ECHA Environmental Protection Agency Home Clear Information Contact QSAR2023 Danish (Q)SAR Models < > New search Searches Results Substances Exact match: 4. AND 5. AND 6.: Page 1 1 2 ID 2.(POS Bacterial Reverse Mutation Test (Ames test ... 2361 Previous Next 1 2 3 152 > Structures 1-10 of 1518 3.[NEG Bacterial Reverse Mutation Test (Ames test ... 3971 > Structure and name 4 NO alert in P: DNA alerts for AMES by OASIS, OECD QSAR Too... 594272 2 Bacterial Reve... Id Similarity Structure Experimental POS alert in P: In vitro mutagenicity (Ames test) alerts by... 185786 > 6 1. OR 2. OR 3. > 6333 HО PhysChem 7.0 4. AND 5. AND 6. 1518 2 XXX-XX-X 1.0Environment ÷ НΟ ADME Human health XXX-XX-X 0,886 NEG + AND. CH3 Intersect results OR Unite results XXX-XX-X NOT 0.846 NEG Complement results Ŧ MAX/MIN 0 More combinations XX-XX-X 0.829 NEG +

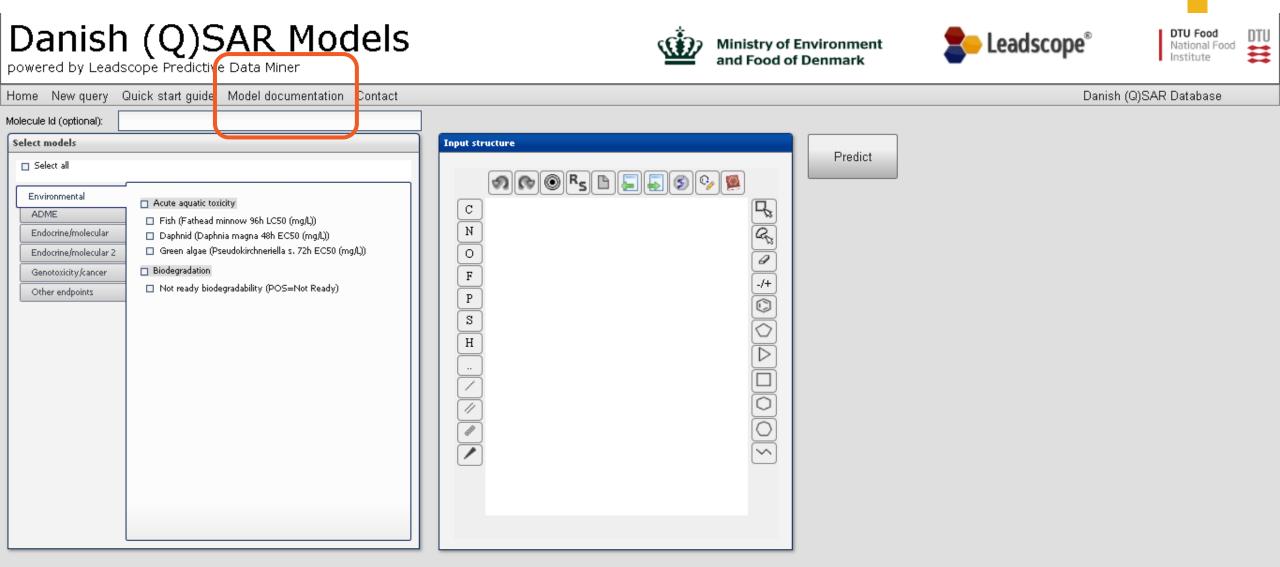
DNCERTING EXPERIMENTAL DAT ND IN SILICO MODELS FOR REAC

Danish (Q)SAR Database: running predictions

ECHA Nordic Council of Ministers

Ministry of Environment of Denmark **Environmental Protection Agency**

DTU Food DTU National Food Ξ Institute


Danish (Q)SAR Database

Genotoxicity/Cancer Ames test

Leadscope model

Danish (Q)SAR Database: running predictions

in vitro) NEW			(2*5-fold cross-validation)	
Pregnane X Receptor	2176	Leadscope	Sens=89.1, Spec=98.6, BA=93.9	
(PXR) A ctivation (Human in vitro)			(2*5-fold cross-validation)	1
Pregnane X Receptor	2330	Leadscope	Sens=86.5, Spec=97.4, BA=92.0	
(PXR) A ctivation (Rat in vitro)	2000	Leadscope		
CYP3A4 Induction			(2*5-fold cross-validation)	
(Human in vitro)	2271	Leadscope	Sens=86.7, Spec=98.2, BA=92.5	
Constitution Andreature			(2*5-fold cross-validation)	
Constitutive Androstane Receptor (CAR)	924	Leadscope	Sens=72.2, Spec=93.5, BA=82.8	
activation at max. 20 uM			(2*5-fold cross-validation)	
Constitutive Androstane	1903	Leadscope	Sens=78.4, Spec=91.4, BA=84.9	
Receptor (CAR) activation at max. 50		Labcope	(2*5-fold cross-validation)	
µM Constitutive Androstane	1.400			
Receptor (CAR)	1408	Leadscope	Sens=58.4, Spec=97.1, BA=77.8	
inhibition at max. 20 uM			(2*5-fold cross-validation)	
Constitutive Androstane Receptor (CAR)	1870	Leadscope	Sens=72.4, Spec=91.6, BA=82.0	
induction at max. 50			(2*5-told cross-validation)	1
µM Bacterial reverse	4102			
	1101			
mutation test (Ames test		<u>Leadscope</u>	Sens=84.3, Spec=85.7, Conc=84.9	
nutation test (Ames test in S. typhimurium in vitro)		Leadscope	Sens-64.3, Spec-63.7, Conc-64.5	J
in S. typhinnirium in vitro)	688	Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhimurium in vitro) Chromosome aberrations in	-688			J
in S. typhimurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>)		Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhimurium in vitro) Chromosome aberrations in	555			J
in S. typhimurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in		Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhimurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase		Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>)	555	Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhinturium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT		Leadscope	Sens=74.6, Spec=75.2, Conc=74.9	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in</i> <i>vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in</i>	555	Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>)	239	Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA	555	Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DN A synthesis (UDS) in rat	239	Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA	239	Leadscope Leadscope Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5 Sens=74.1, Spec=70.1, Conc=72.4	J
in S. typhinuirium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA synthesis (UDS) in rat hepatocytes (<i>in vitro</i>)	239 415	Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5	J
in S. typhinnurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA synthesis (UDS) in rat hepatocytes (<i>in vitro</i>) Syrian hamster embryo (SHE) cell transformation (<i>in</i>	239 415	Leadscope Leadscope Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5 Sens=74.1, Spec=70.1, Conc=72.4	J
in S. typhinnurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA synthesis (UDS) in rat hepatocytes (<i>in vitro</i>) Syrian hamster embryo (SHE) cell transformation (<i>in vitro</i>)	239 415 363	Leadscope Leadscope Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5 Sens=74.1, Spec=70.1, Conc=72.4	J
in S. typhinnurium in vitro) Chromosome ab errations in CHL cells (<i>in vitro</i>) Mutations in thymidine kinase locus in mouse lymphoma cells (<i>in vitro</i>) Mutations in HGPRT locus in CHO cells (<i>in vitro</i>) Unscheduled DNA synthesis (UDS) in rat hepatocytes (<i>in vitro</i>) Syrian hamster embryo (SHE) cell transformation (<i>in</i>	239 415	Leadscope Leadscope Leadscope Leadscope	Sens=74.6, Spec=75.2, Conc=74.9 Sens=85.1, Spec=83.8, Conc=84.4 Sens=81.7, Spec=78.4, Conc=80.5 Sens=74.1, Spec=70.1, Conc=72.4	J

4. Defining the algorithm

4.1 Type of model

A categorical (Q)SAR model based on structural features and numeric molecular descriptors.

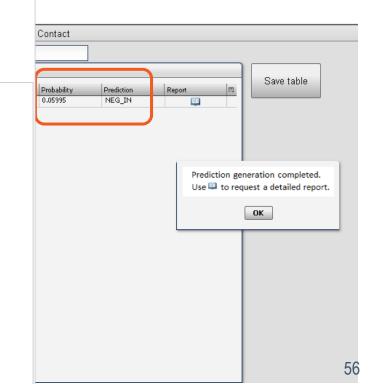
4.2 Explicit algorithm

This is a categorical (Q)SAR model made by use of partial logistic regression (PLR). The model is a composite model consisting of 2 submodels, using all the negatives (1803 chemicals) in each of these and different sub-sets of the positives (see 4.5). The specific implementation is proprietary within the Leadscope software.

Danish (Q)SAR Database: running QSAR model

Danish (Q)SAR Models	Ministry o and Food		
Home New query Quick start guide Model documentation Contact			
Environmental		3. Click predict	
ADME Bacterial reverse mutation test (Ames) in S. typhimurium (in v	2 Draw the melecule/pacto the SI		
	2. Draw the molecule/paste the SI	MILES .	
Genotoxidity/cancer Genotoxidity/cancer Mutations in Thymidine Kinase Locus in Mouse Lymphoma Ce Mutations in HOPRT Locus in Chinese Hamster Ovary Cells D	• 		
Indicators in High-Ri Locos in Chinese Hamster Ovary Cells Unscheduled DNA Synthesis in Rat Hepatocytes S			
Conter in vitro enapoints Conter in vitro enapoints	Home New query Quick start	t guide Model documentation Contact	
Ser-Linked Recessive Lethal Test in Drosophila m. Micronucleus Test in Mouse Erythrocytes	Molecule Id (optional):		
Dominant Lethal Mutations in Rodents Sister Chromatic Exchange in Mouse Bone Marrow Cells	QSAR Results	Save table	
Dominant Lethal Mutations in Rodents Sister Chromatid Exchange in Mouse Bone Marrow Cells Corret Assay in Mouse	Image: Constraint of the second se	Experimental Probability Prediction Report 🕮	
Carcinogenicity Uver specific cancer (rat/mouse in vivo)			
		Prediction generation completed. Use 💷 to request a detailed report.	
Select models and input a chemical structure.		ОК	
		UK	
The target chemical is predicted as Po	sitive or Negative with		
respect to the Ames endpoint based			
associated with the prediction generation	ed by a partial logistic		
regression (PLR) model. In this case	the model returns a		
č			
probability of 0.05995 , leading to a r	regative prediction.)

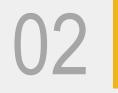
Danish (Q)SAR Database: running QSAR model


Model Features: Danish_QSAR_DB_Bacterial_Reverse_Mutation_Test_Ames_mutagenicity_(S .typhimurium)_QSARmodels.food.dtu.dk v1

Model Features: DKDB_Ames_Mutagenicity_Multiple_Model-1 v1

Model Features: DKDB_Ames_Mutagenicity_Multiple_Model-2 v1

Analog Structures from Model Training Set


Structure	Similarity	Experimental Value - Danish_QSAR_DB_Baote rial_Reverce_Mutation_T est_Ames_mutageniolty_ (8.typhimurium)_QSARm odels.food.dtu.dk	Danich_QSAR_DB_Bacteri al_Reverse_Mutation_Test_ Amec_mutagenicity_(\$.typ himurium)_QSARmodels.fo od.dtu.dk - Highlights	on_Test_Ames_mutageniolty_(8.typhimuriu	Danich_GSAR_DB_Baote rial_Reverce_Mutation_T ect_Amec_mutagenioity_ (\$.typhimurium)_GSARm odels.food.dtu.dk - Prob.
H0 CH	0.7	Positive	H0 CH	Negative	0.287
	0.62	Negative		Negative	0.0271

01 Running VEGA models & ToxRead module and results analysis

02 Using Danish (Q)SAR Database and results analysis

TABLE OF CONTENTS

Running OCHEM model & ToxAlerts and results analysis

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT REACH gateway

		5					НОМ	E PROJECT	RESULTS	RESOURCES	NEWS	CONTACT
			ISH QSAR DAT/	ABASE AM	IBIT OC	CHEM			GATEWAY USER	GUIDE		
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross-validation procedure	Platform	Remarks		OCI	HEM	
Ames test (OECD 471)	ASNN	Classification		4361	2181		OCHEM		1 sta	tistical model	& ToxA	ert match
Online chemical with modeling	databa	ase	_									
atabase 👻 Models 👻						4. O s s s h f s s th		•		-		
X Model profile X Apply a mo	del X											
	ör you is displa	ayed below. If you are new	here, you can also swit	ch to a simplified OCHEM prec	lictor	nodel by prope	rty					
ame or model ID:	Vitre gene mutation study in bacterst VEGA AND ToxReed ANISH OSAR DATABASE ANBT OCHEM est etct (DECD ASNN classification ASNN classification ASNN Classification Content ASNN Classification ASNN Classification Content Classification Classification Classification Classification											
published by midnight	ter				apply the mod	tel using Ames challenge	(training) (4361) illenge (test) (2181)		ASNN	2013-10-25		
												FO
	All VEGA A	All VEGA AND Tox Re End Point Model Ames test (OECD 471) ASNN Online chemical databa with modeling environmer with modeling environmer Model profile X Apply a model X pleic browser Plate available for you is displet ame or model ID:	End Point Model Type Ames test (OECD 471) ASNN Classification Online chemical database with modeling environment Classification Online chemical database Models - Models - Model profile X Apply a model X published by midnighter	All VEGA AND Tox Read DANISH QSAR DATA End Point Model Type Dataset Ames test (OECD ASNN Classification 471} ASNN Classification Colline chemical database with modeling environment Parabase < Models Model profile X Apply a model X Parabase & OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you is displayed below. If you are new here, you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can also set the of models at OCHEM available for you can als	All VEGA AND ToxRead DANISH QSAR DATABASE AM End Point Model Type Dataset size Training set size Ames test (OECD ASNN Classification 4361 Ames test (OECD ASNN Classification 4361 Online chemical database with modeling environment with modeling environment Models Plet browser • ene or model ID: and property name: Ames Models visibility:	All VEGA AND ToxRead DANISH QSAR DATABASE AMBIT OC End Point Model Type Dataset size Training set size Test set size Armes test (OECD 471) ASNN Classification 4361 2181	All VEGA AND ToxRead DANISH QSAR DATABASE AMBIT OCHEM End Point Model Type Dataset size Training set size Test set size Cross-validation procedure Ames test (OECD 471) ASNN Classification 4361 2181 Online chemical database With modeling environment Models 1. Search for the model by proper Integrating environment Integrating environment 1. Search for the model by proper Integrating environment Integrating environment 1. Search for the model by proper Integrating environment Integrating environment 1. Search for the model by proper Integrating environment Integrating environment 1. Search for the model by proper Integrating environment Integrating environment Integrating environment Integrating environment Integrating environment Integra	A1. In vitro gene mutation study in bacteria A1. In vitro gene mutation study in bacteria DANISH QSAR DATABASE AMBIT OCHEM End Point Model Type Dataset Training set Test set Cross-validation Platform Armes test (OECD 471) ASNN classification 4361 2181 OCHEM OCHEM OCHEMENCIES with unoblefing environment In Search for the model by property OCHEMENT Interview Model Type environment 1. Search for the model by property Interview Interview Models visibility Platform OCHEMENT	A.1. In vitro gene mutation study in bacteris All VEGA AND ToxRead DANISH QSAR DATABASE AMBIT OCHEM End Point Model Type Datasset Training set Test set Cross-validation Platform Remarks Arnes test (OECD ASN Classification 4361 2181 OCHEM Up to the modeling environment OCHEM Up to the modeling environment Version 2000 Online Chemical database With modeling environment I. Search for the model by property Version 2000 Version 2000 Version 2000 Interview Construction of the modeling environment Interview Construction of the study in blate and private Order by (creation time CONACERT membere) models @modeling test; (2011) Interview ConaceRT Version 2000 Interview Concertence Concencertence Concertence Concertence Concertenc	A.I. In vitre gene mutation study in bacteria ALL VEGA AND ToxRead DANISH QSAR DATABASE AMBIT OCHEM Tend Point Model Type Dataset Training set Test set Cross-validation Procedure Platform Remarks Ames test (OECD ASN classification data data data data data data data dat	A.1. hvitre gene mutation study in basteria ALI VEGA AND TOXRead DANISH QSAR DATABASE AND TO CHEM Tend Poinit Model Type Detesset Training set Tess set Cross-validation Platform Remarks Annes test (OECD ANN Classification 4361 2181 OCHEM Annes test (OECD ANN Classification 4361 2181 OCHEM Test (Chem Disconstruction) ANN Classification 4361 2181 OCHEM Test (Chem Disconstruction) Model Type Detesset (Chem Disconstruction) Model Disconstruction (Chem Disconstruction) Mod	A. I. NUTURE gene mutation study in batteris A. I. Nuture gene mutation study in batteris A. I. Nuture in model in the study in batteris A. Serie (DECD ANN Cassification A data 2181 OCHEM A. Serie (DECD ANN CASSIFICATION A data 2181 OCHEM A data 2181 OCHEM

OCHEM: running model & ToxAlerts

Home▼ Database▼ Models▼	A+ a- Privacy statement
Model applier X Model profile X Apply a model X	
Model profile Statistical parameters, tables, charts - all the information related to the model. 2. Stats and info about AD	
Overview Applicability domain Model name: Ames leven berg .published in Applicability domain for <l>in silico</l> >in silico >in silico >in silico >in silico Public ID is 1 Predicted property: AMES modeled in CLASS Training method: ASNN Data Set # Accuracy Balanced Accuracy MCC AUC • Training set Ames challenge (training) 4359 records 77.7% ± 0.6 77.5% ± 0.6 0.55 ± 0.01 0.852 ± 0.006 • Test set [Ames challenge (test) v] × 2181 records 79.6% ± 0.8 79.5% ± 0.9 0.59 ± 0.02 0.86 ± 0.008 Show ROC curves Realµ/Predicted	(OEstate) Corret. limit: 0.95 Variance threshold: 0.0, Maximum value: 999999, (AMES with weight 1.0) (classes weights: [inactive'0.6,]) J.Levenberg, 1000 iterations, 3 neurons ensemble:100 k=0 additional param PARALLEL-110 5-fold cross-validation 79 pre-filtered descriptors Levenberg, 1000 iterations, 3 neurons ensemble:100 k=16 Cakoulated in 2614 seconds Size: 2554 Kb Model applier X Model profile X Apply a model X
Number of compounds ignored because of errors in original model = 2 [Exclude duplicated records] Use optimal threshold for balanced accuracy Export this model Million XML * MMP-based analysis (experimental) APPLY THE MODEL TO NEW COMPOUNDS APPLY THE MODEL TO NEW COMPOUNDS	Provide the compound(s) to pred Please provide compounds for which you w Several options are available: Upload compounds from a file SDF, MOL2, SMILES or an Excel sheet

	Please provide compounds for which Several options are available:	you want to predict the target property
	O Upload compounds from a file SDF, MOL2, SMILES or an Excel sheet	Scegli file Nessun file selezionato
	 Draw Molecule click on depiction to the right to draw 	(molecule profile)
	Name/CASRN/SMILES: e.g., "CC=CCC" or "Aspirine"	O=Cc1ccc(O)c(O)c1 load structure
	○ Choose a previously prepared set:	[]
	O Select molecules by a tag:	[]
	Additional options	
	Next>>	

3. Paste the SMILES

OCHEM: running model & ToxAlerts

Online chemical database with modeling environment	4.Online result	LIFE17 GIE/IT/000461
Home + Database + Models +		
Model applier X Model profile X Apply a model X Prediction neighbors X Model's article X Export predictions X		
OCHEM predictor - results () Here you can browse the predictions for your compounds and export them in a variety of formats		
Export results in a file (Excel, CSV or SDF)		
Sorting none Ascending Ascending		
AMES (Ames levenberg) = inactive (77.0% accuracy) CACHED		
1 - 1 of 1		E Expert regult: excel CSV or
		5. Export result: excel, CSV or SDF
	Numerie	

											Numeric							
											prediction for				ASNN-	Estimated		
											AMES	PROB-	ASNN-	CLASS-	CORREL{A	accuracy{AM		
											{predicted by	STD{AMES	STDEV{AME	LAG{AMES	MES by	ES predicted	APPLICABIL	
										AMES (predicted by	ochem.eu/model	by Ames	S by Ames	by Ames	Ames	by Ames	ITY_DOMAI	
SMILES	CASRN	EXTERNA	N	NAME	ARTICLEI	PUBMEDI	PAGE	TABLE	ERROR	ochem.eu/model/1}	/1}	levenberg}	levenberg}	levenberg}	levenberg}	levenberg}	Ν	
OC1=CC=	=C(C=O)C=	C10			-	-	-	-		inactive	0.2437	0.18	0.09	0.49	0.26	٥.77 o	TRUE	-

OCHEI	M: rur	nning model & ToxAlerts	Online chemical database with modeling environment Home • Database • Models • Welcome to ToxAlerts! Structural alerts (also known as "toxicophores") are molecular patterns known to be associated with particular type of toxicity. The studies performed last decade has shown that structural alerts is an efficient technique to detect potentially toxic chemicals. Screening chemical compounds against known structural alerts can be a good practice to complement the QSAR models and to help interpreting their predictions. ToxAlerts is a platform for screening chemical compounds against structural alerts. The platform allows to search structural alerts, introduce your own alerts and screen chemical libraries for alert-hitting compounds.
	1 1 4 4 4	117 ToxAlerts for Genotoxic carcinogenicity, mutagenicity	View available alerts Upload new alerts Screen your molecules In case of any questions, ideas, or problems with the software, feel free do drop us a message. We highly appreciate any feedback from you!
Online chemica	g environment		Welcome, Dear Mrs.Raitano! 🖂 My account Logout
Home + Database + Models +			A+ a- Privacy statement
ToxAlerts: Structural alerts brow Here you can browser structural alert PILTERS Aticle: Atication: Marrock: CentrobocarchogenEdity To Name / Alert ID: Show only approved alerts	vser ts for enous toxiconsical en Upload new aler 1 - 100 of 117	100 ♥ items on page 1 of 2 > >> Aromatic nitro (general) Ar = any aromatio/heteroaromatio ing	ISS2, 21 Feb 12 midnighter 12
	Ar—NH ₂	Aromatic amine (general) Ar = any aromatio/heteroaromatic ring SMARTS: [ah0][NUGH2] Endpoint: Genotoxic carcinogenicity, mutagenicity Kazius, J Derivation and validation of toxicophores for mutagenicity p J. Med. Chem. 2005; 48 (1) 312-20 Akrt10: 77022	1552,20 Feb 12 midnighter ea
	NH,O,S	Three-membered heterocycles (general) SMARTS: [N03H1,SX2,0X2]1[CX4][CX4]1 Endpoint: Genotoxic carcinogenicity, mutagenicity Kazius, J Derivation and validation of toxicophores for mutagenicity p J. Med. Chem. 2005; 48 (1) 312-20 Akrtl0: 79023	1552, 20 Feb 12 midnighter 22

Home∓ Database∓ Models∓

Model templates X Screen compounds against alerts X

 $\vec{\phi^{**}}$ ToxAlerts: Screening results The compounds that matched any alerts grouped by endpoints, publications and by alerts themselves

ENDPOINTS	x	View records for the filtered compounds 🛛 🚳 Tag the 1 filtered molecules 🛛 🖼 Export the screening results 1 - 1 of 1
 Skin sensitization 	1 compounds	Catechols and O-alkyl precursors (for Skin sensitization in 3894 Barratt)
 Genotoxic carcinogenicity, mutagenicity 	1 compounds	Aldehydes (for Skin sensitization in 3894 Barratt)
Centrotoxic curve in ogeniercy, indrageniercy Reactive, unstable, toxic	1 compounds	Aldehydes (for Skin sensitization in 3904 Gerner)
Acute Aquatic Toxicity	1 compounds	Catechols, resorcinols, hydroquinones (for Skin sensitization in 3904 Gerner)
Potential electrophilic agents	1 compounds	Aldehydes and precursors (for Skin sensitization in 3894 Payne)
 Idiosyncratic toxicity (RM formation) 	1 compounds	Catechols (for Skin sensitization in 3894 Payne)
Custom filters		Di- or polyhydroxy aromatic compounds and their precursors (for Skin sensitization in 3894 Payne)
 Custom niters Extended Functional Groups (EFG) 	1 compounds 1 compounds	1,2-Dihydroxy aromatic compounds (for Skin sensitization in 3894 Payne)
Promiscuity	1 compounds	Simple aldehyde (for Genotoxic carcinogenicity, mutagenicity in 3908 Benigni)
Promiscuity PAINS compounds		Aromatic aldehydes (for Skin sensitization in 3908 Enoch)
	1 compounds	Ortho-disubstituted benzenes (for Skin sensitization in 3908 Enoch)
Biodegradable compounds	1 compounds	Aldehydes (for Reactive, unstable, toxic in 3911 ChemDiv)
Nonbiodegradable compounds	1 compounds	Ortho-substituted phenols, primary and secondary amines (for Skin sensitization in 3908 Enoch)
Non-genotoxic carcinogenicity	1 compounds	Aldehydes (for Acute Aquatic Toxicity in 3890 Hermens) Aldehydes (for Acute Aquatic Toxicity in 3892 Verhaar,H.J.M.)
	1 compounds	Hydroquinones (for Potential electrophilic agents in 3911 Enoch)
O Glaxo Wellcome	1 compounds	Mono-aldehydes (for Potential electrophilic agents in 3911 Enoch)
	1 compounds	Ortho- or parahydroguinones (for Idiosyncratic toxicity (RM formation) in 3905 Kalgutkar)
O LINT	1 compounds	Aldehydes (for Reactive, unstable, toxic in 3911 Life Chemicals)
O Inpharmatica	1 compounds	Hydroguinone (for Reactive, unstable, toxic in 3911 Life Chemicals)
O MLSMR	1 compounds	Aldehydes (for Reactive, unstable, toxic in 3911 Enamine)
O SureChEMBL	1 compounds	C, N, O, P and S atoms in unusual valence states (for Reactive, unstable, toxic in 3911 Enamine)
O SMARTCyp	1 compounds	Aldehydes (for Reactive, unstable, toxic in 3911 "Ontario"_filters)
UBLICATIONS		Catechols (for Reactive, unstable, toxic in 3911 "Ontario"_filters)
		Aldehydes (including aminoformyl moleües) (for Reacüve, unstable, toxic in 3911 Mayoridge)
O 1994 Barratt	1 compounds	Simple anilines and phenols (for Reactive, unstable, toxic in 3911 Maybridge)
O 2004 Gerner	1 compounds	Atoms supported in ALOGPS program (for Custom filters in 3912 Tetko, I.V.)
O 1994 Payne	1 compounds	Organic chemistry atoms (for Custom filters in 3912 Tetko, I.V.)
O 2008 Benigni	1 compounds	Carbonyl compouns: aldehydes or ketones (for Extended Functional Groups (EFG) in 3905
O 2008 Enoch	1 compounds	CheckMol)
O 2011 ChemDiv	1 compounds	Aldehydes (for Extended Functional Groups (EFG) in 3905 CheckMol) Hydroxy compounds: alcohols or phenols (for Extended Functional Groups (EFG) in 3905 CheckMol
O 1990 Hermens	1 compounds	Phenols (for Extended Functional Groups (EFG) in 3905 CheckMol)
O 1992 Verhaar,H.J.M.	1 compounds	A OH Diphenols (for Extended Functional Groups (EFG) in 3915 Salmina, ES)
O 2011 Enoch	1 compounds	Aromatic compounds (for Extended Functional Groups (EFG) in 3905 CheckMol)
O 2005 Kalgutkar	1 compounds	Arenes (for Extended Functional Groups (EFG) in 3915 Salmina, ES)
2011 Life_Chemicals	1 compounds	Nonmetals (for Extended Functional Groups (EFG) in 3915 Salmina, ES)
O 2011 Enamine	1 compounds	Chalcogens (oxygen group) (for Extended Functional Groups (EFG) in 3915 Salmina, ES)
O 2011 "Ontario" filters	1 compounds	molecule profile Tetragens (carbon group) (for Extended Functional Groups (EFG) in 3915 Salmina, ES)
O 2011 Maybridge	1 compounds	aldehyde (for Promiscuity in 3906 Pearce, BC)
 2012 Tetko, I.V. 	1 compounds	Catechol_A (for PAINS compounds in 3910 Baell, JB)
 2012 Telk0, I.V. 2005 CheckMol 	1 compounds	1,2 – Diphenols (for Extended Functional Groups (EFG) in 3905 CheckMol)
2005 Checkword 2015 Salmina, ES	1 compounds	Alcohols (for Biodegradable compounds in 3903 Environment)
2006 Pearce, BC	1 compounds	Aldehyde (for Biodegradable compounds in 3903 Environment)
		MoreThanTwoHydroxyOnAromaticRing (for Nonbiodegradable compounds in 3903 Environment)
2010 Baell, JB 2002 Equipoprent	1 compounds	Molecules with at least one carbon (for Custom filters in 3912 Tetko, I.V.)
2003 Environment	1 compounds	Simple aldehyde (for Non-genotoxic carcinogenicity in 3913 Benigni, R)
2013 Benigni, R 4004 Harran	1 compounds	3 - Aromatic carbon (for UNIFAC in 3891 Hansen)
O 1991 Hansen	1 compounds	8 - Aromatic carbon-alcohol (for UNIFAC in 3891 Hansen) 10 - Aldehyde (for UNIFAC in 3891 Hansen)
O 2003 Wittig	1 compounds	10 - ACH (3 - Aromatic carbon) (for UNIFAC in 3903 Wittig)
O 1999 Hann	1 compounds	11 - AC (3 - Aromatic carbon) (for UNIFAC in 3903 Wittig)
O 2008 Brenk	1 compounds	18 - ACOH (8 - Aromatic carbon-alcohol) (for UNIFAC in 3903 Wittig)
○ 2019 Blake JF	1 compounds	21 - CHO (10 - Aldehyde) (for UNIFAC in 3903 Wittig)
O 2017 Inpharmatica	1 compounds	A33 - phenol (for Glass Wellcome in 3899 Hann)

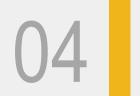
Paste the SMILES

Provide the compound(s) to	a waadlat
• • • •	h you want to predict the target property
O Upload compounds from a file SDF, MOL2, SMILES or an Excel shee	Scegli file Nessun file selezionato
Draw Molecule click on depiction to the right to draw	molecule profile
Name/CASRN/SMILES: e.g., "CC=CCC" or "Aspirine"	O=Cc1ccc(O)c(O)c1 load structure
O Choose a previously prepared set	et []
 Select molecules by a tag: 	[]
Additional options	
Disable prediction cache	

OCHEM: running model & **ToxAlerts**

A+ a- Privacy statemen						
OCHEM home page X Edit molecule X Alert details X						
ToxAlerts: Structural alerts browser Here you can browser structural alerts for various to	oxicological endpoints					
FILTERS	🕞 Upload new alerts 🔍 Screen compounds 📣 📣					
Article: All articles Endpoint / Filter type: All endpoints Name / Alert ID: Show only approved alerts	1-1 of 1 Simple aldehyde R = aliphatic or aromatic carbon; α,β-unsaturated aldehydes are excluded SMARTS: [CX3]([H])x=[OX1])[#1,#6&!\$([CX3]=[CX3])] Endpoint: Genotoxic carcinogenicity, mutagenicity Benigni, R Structure alerts for carcinogenicity, and the Salmonella ass Mutat. Res. 2008; 659 (3) 248-61 Alert ID: 74368 1-1 of 1	15.52, 20 Feb 12 / 16.55, 6 Dec 12 midnighter ≅ / SALMINA1987 1				

01 Running VEGA models & ToxRead module and results analysis



02 Using Danish (Q)SAR Database and results analysis

TABLE OF CONTENTS

03 Running OCHEM model & ToxAlerts and results analysis

Checking the availability of the tools for in vitro gene mutation in bacteria in the CONCERT **REACH** gateway

All VEGA /	ND ToxRe	ad DAN	NISH QSAR DATA	ABASE AM	ABIT OC	CHEM			GATEWAY			
End Point	Model	Туре	Dataset size	Training set size	Test set size	Cross-validation procedure	Platform	Remarks		OCI	HEM	
Ames test (OECD 471}	ASNN	Classification		4361	2181		OCHEM		1 sta	1 statistical model & ToxAlert matcl		
	_											

procedure

AMBIT

TOX 7.6.1. Genetic toxicity in

vitro

size

50366

size

size

1

Search 🔻 👘 Asse

Assessments 🔹 👘 Import 💌

Enhanced functions 🔻

Help 🔻

[giuseppa.raitano] Log out

LRI AMBIT2 Read Across tool - new version!

Chemical substance database with read across workflow : IUCLID6 support; featuring OpenFoodToxData and VEGA integration

Simple search

Enter chemical name, identifiers, SMILES, InChl.

formaldehyde

Search

Admin 🔻

Advanced: Structure search | Search substances by identifiers | Search substances by endpoint data | Free text search

Legal notice:

The LRI AMBIT - IUCLID tool is loaded with non-confidential REACH data supplied by ECHA.

The legal notice from the ECHA dissemination website http://echa.europa.eu/web/guest/legal-notice#registration applies to the AMBIT users.

In addition, Cefic disclaims any liability of whatsoever nature either direct or indirect regarding the use of the AMBIT-IUCLID tool or information / data contained in it.

IdeaConsult is a contractor of Cefic developing and hosting the AMBIT-IUCLID tool. Some data used may have been provided by Cefic. IdeaConsult has acted solely on the instructions of Cefic. IdeaConsult disclaims any liability of whatsoever nature, direct or indirect, regarding the use of any information/data by the AMBIT-IUCLID tool. IdeaConsult shall not have any liability of whatsoever nature for any use or misuse of the AMBIT-IUCLID tool.

Simple search

Enter chemical name, identifiers, SMILES, InChl

formaldehyde

Search

Advanced: Structure search | Search substances by identifiers | Search substances by endpoint data | Free text search

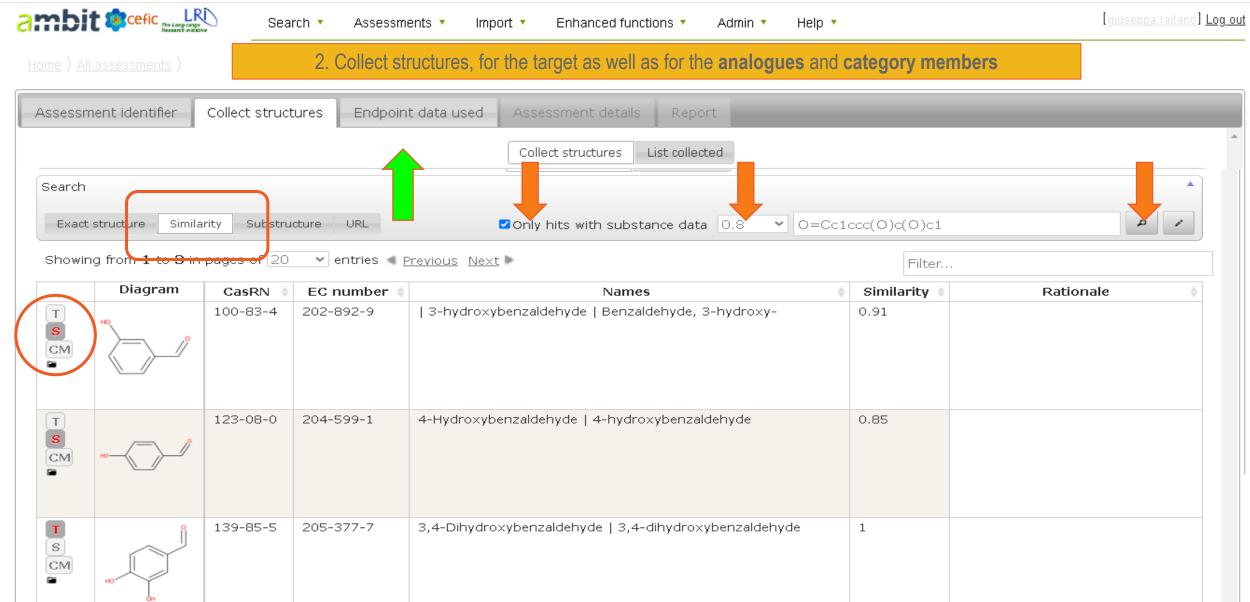
Legal notice:

The LRI AMBIT - IUCLID tool is loaded with non-confidential REACH data supplied by ECHA.

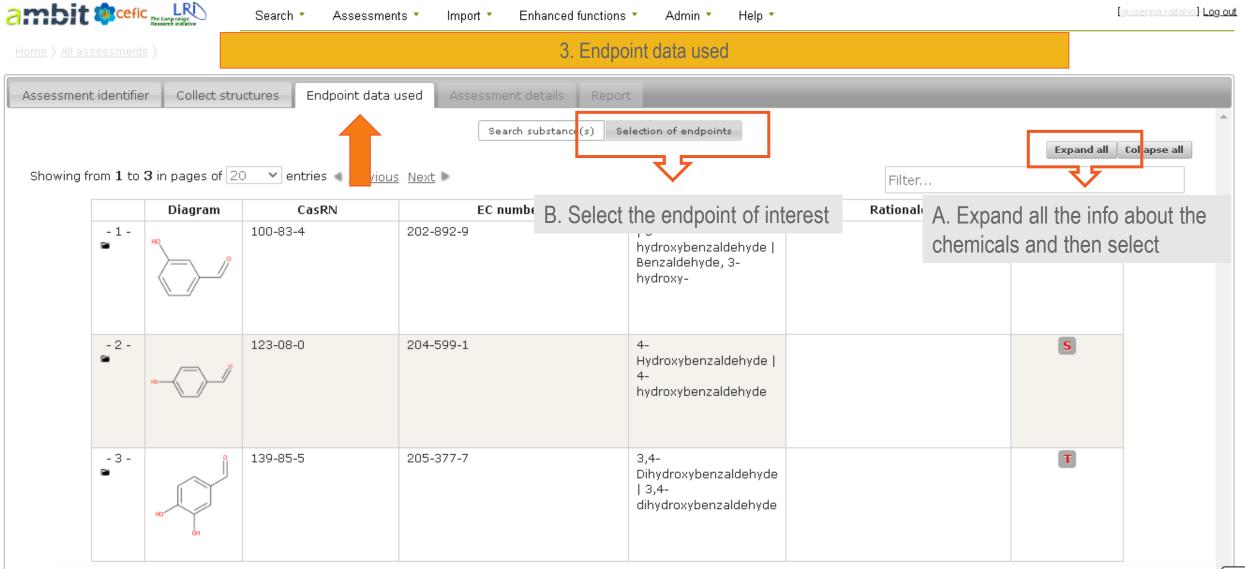
The legal notice from the ECHA dissemination website http://echa.europa.eu/web/guest/legal-notice#registration applies to the AMBIT users.

In addition, Cefic disclaims any liability of whatsoever nature either direct or indirect regarding the use of the AMBIT-IUCLID tool or information / data contained in it.

IdeaConsult is a contractor of Cefic developing and hosting the AMBIT-IUCLID tool. Some data used may have been provided by Cefic. IdeaConsult has acted solely on the instructions of Cefic. IdeaConsult disclaims any liability of whatsoever nature, direct or indirect, regarding the use of any information/data by the AMBIT-IUCLID tool. IdeaConsult shall not have any liability of whatsoever nature for any use or misuse of the AMBIT-IUCLID tool.



	I		
ssessment identifier	Collect structures	Endpoint data used Assessment details Report	
	Assessment title*0:	3,4-Dihydroxybenzaldehyde	Five steps assessment
	Owner* 🛚 :	Nelly	category formation. <u>REACH</u>
	Purpose* 🔁 :	QSAR2023 course	guidance 🗗 The assessment 🛈 workflow is organized in five main tabs:
	Version 0;	?.?	1. Assessment identifier 0
	Version start date 0:		2. Collect structures
Versi	ion last modified on 0:		3. Endpoint data used 🛙
	Status 🛚 :		4. Assessment details 0
	Assessment code*0:	read across1	5. Report 6
Asse	essment Doclink(s)* 🛚 :	local	e ^z
	Assessment ID 🛚 :		
Use	ers with write access O:		Save
Use	ers with read access $m 0$:		Save



	Search 🔹 As	sessments 🔹 Import 🔹	Enhanced functions 🔹	Admin 🔹 Help 🔹			[giuseppa.ra	iitano] <u>Log ou</u>	
Home) All assessments)	2. Collect	structures, for the tar	get as well as for the	analogues and categor	ry membe	ers			
Assessment identifier Collect structures Endpoint data used Assessment details Report									
		Col	lect structures List collec	search for th	ne target: (CAS N, SMILES	S, drawing e	tc	
Search	Search								
Exact structure Similarity	Exact structure Similarity Substructure URL target Enable fragment search 0=Cc1ccc(0)c(0)c1 P								
showing from 1 to 1 in page	s of 20 🔹 entrie	es 🔹 <u>Previous</u> <u>Next</u> 🕨			Filter				
Diagram C	asRN 🝦 🛛 EC nu	umber 🔶	Nam	es	$\stackrel{\wedge}{=}$	Ratio	nale	÷	
	9-85-5 205-37	7-7 3,4-Dihydrox	ybenzaldehyde 3,4-dih	ydroxybenzaldehyde	F	Reason for selectio	n_		
4								•	

mbit 🌼	cefic LRN Search • Assessments • Import • Enhanced functions • Admin • Help •	[giuseppatraitano] Log ou
	nents) 3. Endpoint data used	
Assessment iden	ntifier Collect structures Endpoint data used Assessment details Report	
	Search substance(s) Selection of endpoints	
🗹 Show all e	ndpoints	Filter
▶ P-Chem		select all unselect all [91169]
 Env Fate 		select all unselect all [55690]
• Eco Tox		select all unselect all [115597]
- Tox		select all unselect all [228703]
	g 18 endpoint(s) (1 to 18)	
	7.2.1. Acute toxicity - oral	[26076] 0
	7.2.2. Acute toxicity - inhalation	[9213] 🖸
	7.2.3. Acute toxicity - dermal	[11852] 0
	7.3.1. Skin irritation / Corrosion	[21694] 0
	7.3.2. Eye irritation	[18430] 🖯
	7.4.1. Skin sensitisation	[16404]
	7.5.1. Repeated dose toxicity - oral	[20212] 0
	7.5.2. Repeated dose toxicity - inhalation	[6657] 0
	7.5.3. Repeated doos toxicity dermal	[2139]
	7.6.1. Genetic toxicity in vitro	[50366] 0
		[10222]
		[6299]

Using AMBIT database and results analysis

ambit 🕸 cefic 👢	Search 🕇	Asse	essments 🔹 🛛 I	Import 🔹	Enhanced functions 🔹	Admin 🝷	Help 🔻	(giuseppatraitano) Log o t
					4. Assessme	ent details		
Assessment identifier	collect structures	Endpoint	data used	Assessmer	nt details Report	_	_	
Identifiers TOX Showing from 1 to 3 in page	s of 20 💙 entries 🖌	Previou	us Next D	Initial	matrix Working matrix	Final matri		 Initial matrix: all the available info is listed Working matrix: it is possible to add or eliminate data Final matrix
Substance Name I5001) Data source	Tag	Diagram	Constitu			7.6.1	3) Final matrix
3-hydroxybenzald <u>ECHA-8</u> ehyde ®	<u>a</u>	S O		Benzaldet hydroxy-	<u>Structural Alert for S. typ</u> <u>Potential S. typhimurium</u> <u>Mutagenicity (Ames test)</u> <u>No alerts for S. typhimuri</u> <u>Unlikely to be a S. typhim</u>	TA 100 mutaqe) model (CAES) um mutagenic	en based on Q AR) - predictio ity = NO 🖩 0	Don = NON-Mutagenic III 0
3,4-DIHYDROXYB ENZALDEHYDE	<u>4</u> OpenFoodToxData	0		3,4- Dihydroxy	Structural Alert for S. typ Potential S. typhimurium Mutagenicity (Ames test) No alerts for S. typhimuri Unlikely to be a S. typhim Negative I (EFSA opinion) Negative I (EFSA opinion) Negative I (EFSA opinion) Negative I (EFSA opinion) Negative I (EFSA opinion)	TA 100 mutage) model (CAES; um mutagenic urium TA 100 m) 0) 0) 0) 0	en based on Q AR) - predictio ity = NO 🖩 🛈	<u>SAR = NO</u> on = NON-Mutagenic
4-HYDROXYBENZA <u>FOOD-</u> LDEHYDE ®	<u>4</u> OpenFoodToxData	S Ø	•••	4- Hydro×yb¢	<u>Structural Alert for S. typ</u> <u>Potential S. typhimurium</u> <u>Mutagenicity (Ames test)</u> <u>No alerts for S. typhimuri</u>	TA 100 mutage) model (CAES)	en based on Q AR) - predictio	SAR = NO III II on = NON-Mutagenic III II

Using **AMBIT** database and results analysis

<u>Home</u>) <u>All assessments</u>) <u>This assessment</u>) <u>Report</u>)

Create Word file

Ambit Assessment Report

3,4-Dihydroxybenzaldehyde

Author: Date: Assessment code: Purpose: Nelly 03.06.2023 ecd6a503-83e3-40c8-a1f2-8bca2eee1036 QSAR2023 course

1. Assessment Identifiers

Assessment title:	3,4-Dihydroxybenzaldehyde
Owner:	Nelly
Purpose:	QSAR2023 course
Version:	1
Status:	draft
Version start date:	03.06.2023
Version last modified on:	03.06.2023
Published:	draft
Assessment code:	read across1
Assessment DocLink:	local

LIFE17 GIE/IT/00046

Final Workshop

2-day workshop

Monday 19/06, full day Workshop presentations

Tuesday 20/06, morning Training sessions

Date

Venue

Istituto di Ricerche Farmacologiche Mario Negri IRCCS. The EU LIFE CONCERT REACH project opens a web-based "<u>gateway</u>" for the exploitation of (Q)SAR models in the (eco)toxicological evaluation of new compounds

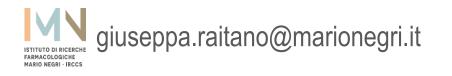
2 days Workshop Hybrid Event

Organized by: Coordinating Beneficiary.

It can be attended in person at the Mario Negri Institute, in Milan, Italy and virtually.

Admission is free of charge. Please make your registration in advance, since there is maximum number of participants. We will notify acceptance of the registered participants.

https://www.life-concertreach.eu/final-workshop-19-and-20-june-2023/


THANKS

Does anyone have any questions? https://www.life-concertreach.eu/

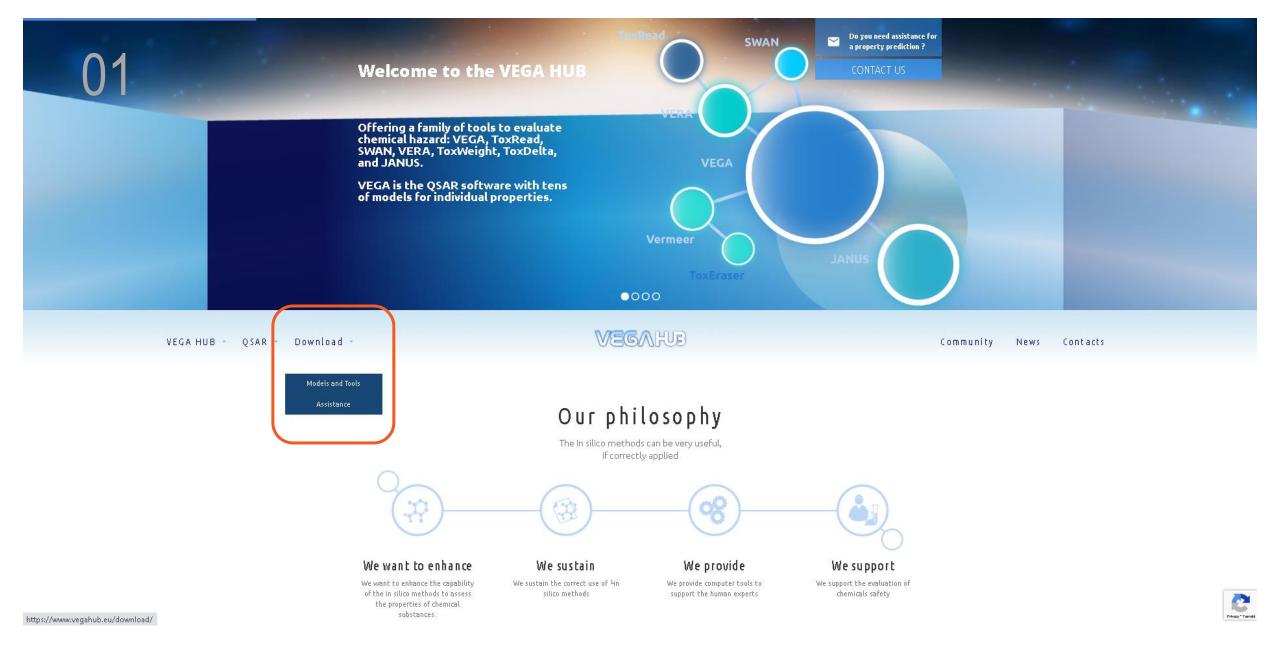
f 🖸 G+ 🎐 in

Acknowledgment: My colleagues, All the partners of the project, Rodolfo Gonella Diaza from Knoell

Target molecule

Pub Chem About Posts

Submit Contact


SEARCH FOR

3,4-Dihydroxybenzaldehyde

Treating this as a text search.

BEST MATCH

3,4-Dihydroxybenzaldehyde; Protocatechualdehyde; 139-85-5; PROTOCATECHUIC ALDEHYDE; Rancinamycin IV; Benzaldehyde, 3,4-Dihydroxy-; 4-Formyl-1,2-Dihydroxybenzene; 3,4-Dihydroxybenzenecarbonal; ... Compound CID: 8768 MF: C7H6O3 MW: 138.12g/mol IUPAC Name: 3,4-dihydroxybenzaldehyde Isomeric SMILES: C1=CC(=C(C=C1C=O)O)O InChIKey: IBGBGRVKPALMCQ-UHFFFAOYSA-N InChl: InChl = 1S/C7H6O3/c8-4-5-1-2-6(9)7(10)3-5/h1-4,9-10H Create Date: 2005-03-26 Similar Structures Search Related Records Summary

VEGAHB

Community News Contacts

toxRead

Privacy* Tarmini

VEGA QSAR

and its features

VEGA HUB QSAR Download

Screenshots

Interpretation

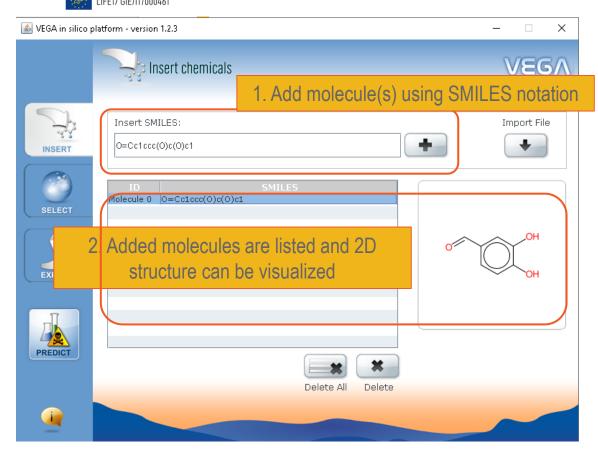
Download Previous Versions

How to quote VEGA QSAR

All the VEGA models are also available in a unique stand-alone application.

With the VEGA application you can easily execute all the models on your local machine without sending any information to our server. VEGA is the ideal application for batch processing large dataset. VEGA can be installed and used on any operative system supporting JAVA technology (for any doubt please visit JAVA website).

Free download VEGA QSAR Application

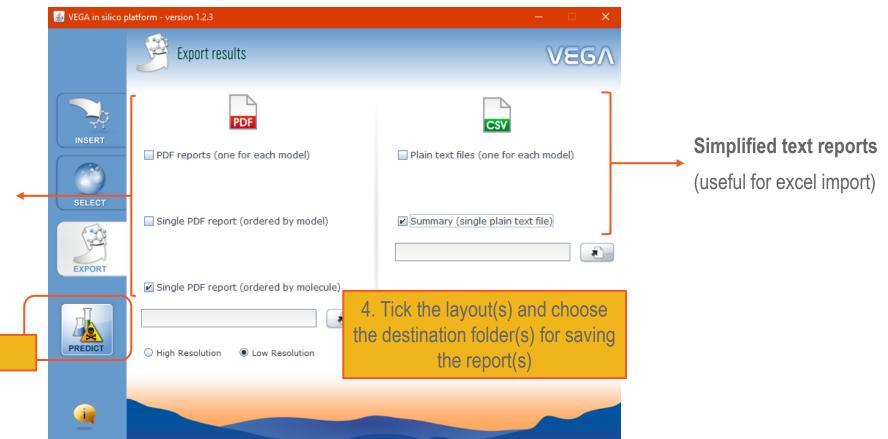

Visit the link to download the application.

Nome	Ultima modifica	Тіро	Dimensione
jdk-11.0.6	24/05/2023 09:18	Cartella di file	
README	24/05/2023 09:17	Documento di testo	2 KB
🛃 Vega-GUI-1.2.3	24/05/2023 09:18	Executable Jar File	254,025 KB
📄 Vega-launcher-LINUX.sh	24/05/2023 09:18	File SH	1 KB
💿 Vega-launcher-WIN	24/05/2023 09:18	File batch Windows	1 KB

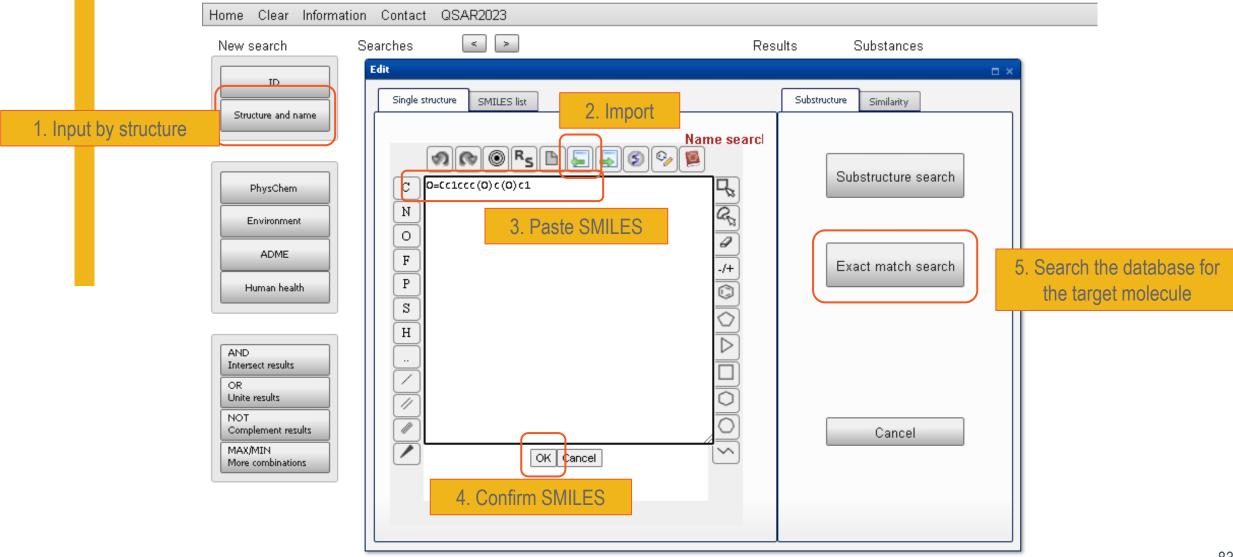
Apri file -	Avviso di sicur	ezza	×
Impossi	bile verificare	l'autore. Eseguire il software?	
-	Nome:	EGA-GUI-1.2.3\VEGA GUI 1.2.3\Vega-launcher-WIN.b:	at
ψ	Autore:	Autore sconosciuto	
	Tipo:	File batch Windows	
	Da:	D:\VEGA-GUI-1.2.3\VEGA GUI 1.2.3\Vega-launcher-WIN	I
⊘ Awis	sa sempre prim	Esegui Annulla a di aprire questo file	
8	Eseguire solo	pone di una firma digitale valida che ne verifichi l'autore software proveniente da autori considerati attendibili. ninare quale software eseguire	2.

VEGA: running predictions

EGA in silico plat	form - version 1.2.3 – 🗆 🗙
	Select models VEGA
-	Filter models: All available endpoints
	Mutagenicity (Ames test) Select all models ② Mutagenicity (Ames test) model (CAESAR) - v. 2.1.14 ③ Mutagenicity (Ames test) model (ISS) - v. 1.0.3 ③ Mutagenicity (Ames test) model (SarPy-IRFMN) - v. 1.0.8 ③ Mutagenicity (Ames test) model (KNN-Read-Across) - v. 1.0.1 ③ Mutagenicity (Ames test) model for aromatic amines (CONCERT/IRFMN) - v. 1.0.0 ☑ Mutagenicity (Ames test) CONSENSUS model - v. 1.0.4
	Developmental toxicity Select all models 3. Select the model(s)


VEGA: running predictions

Full PDF reports:


- prediction(s) results
- applicability domain
- experimental data of the target (if any)
- most similar substances
- other supporting info (if any)

5. Click on «Predict»

Danish (Q)SAR Database: gathering (Q)SAR results

Danish (Q)SAR Database

Danish (Q)SAR Database: gathering (Q)SAR results

New search Searches Pactor Match Page 1 ID Structure and name PhysChem New Searches Page 1 PhysChem Phy	Danish (Q)SAR Database Home Clear Information Contact QSAR2023	6. Summary of the search performed
Environment ADME Human health AND Intersect results OT Complement results MAT More combinations Intersect results MAR More combinations	New search Searches ID ID Structure and name PhysChem Environment ADME Human health AND Intersect results OR Unite results NOT Complement results MAX/MIN	Exact match: : Page 1 × Previous Next 1 I Structures 1-1 of 1 I H0 I Image: Structure Id Similarity + H0 I Image: Structure Id Structure Id Similarity + H0 Image: Structure Image: Structure Id Image: Structure Id

The GATEWAY

Why it will be useful both for regulators and the industry

Feedback from regulators & end-users (via workshops):

- Regulators recommend multiple systems.
 - Within the 4 platforms are available several in silico models

- Difficulties: access, quality/choice, use, interpretation, integration

- Access. Which models? Commercial/public. We cover both
- Quality. Any tool possible, providing doc. We focus on 4 well-known systems
- Use. CONCERT improves the use and explanation
- Integration. CONCERT improves integration

Why it will be useful both for regulators and the industry

- Website active for 5 years after the end of the project
- Selection of the endpoints for other regulations then REACH (cosmetics...)
- Continuous updating by adding new tools and platforms

in silico tool	Prediction	reliability
Mutagenicity (Ames test) CONSENSUS model-assessment	NON-Mutagenic (Consensus score: 0.675)	0.675
Mutagenicity (Ames test) model (CAESAR)	NON-Mutagenic (GOOD reliability)	0.96
Mutagenicity (Ames test) model (ISS)	Mutagenic (LOW reliability)	0
Mutagenicity (Ames test) model (SarPy-IRFMN)	Possible NON-Mutagenic (GOOD reliability)	0.96
Mutagenicity (Ames test) model (KNN-Read-Across)	NON-Mutagenic (GOOD reliability)	0.965
Toxread	NON-Mutagenic	
Battery	NEG_IN	
CASE Ultra	NEG_IN	
Leadscope	NEG_IN	aggiungere probability
SciQSAR	NEG_OUT	
оснем	INACTIVE	0.77
OCHEM ToxAlerts	Simple Aldehyde	
AMBIT	negative	