

On-line Chemical Modeling Environment (OCHEM): an advanced platform for (multi)task properties analysis

Dr. Igor V. Tetko

BIGCHEM GmbH & Institute of Structural Biology, HelmholtzZentrum München

Institute of Structural Biology Wednesday, December 2, 2020

HelmholtzZentrum münchen German Research Center for Environmental Health

big data in chemistry + informatics = chemoinformatics

The increasing volume of biomedical data in chemistry and life sciences requires development of new methods and approaches for their analysis.

The BIGCHEM project will provide innovative education in large chemical data analysis. The innovative research program will be implemented with the target users, large pharma companies and SMEs, which generate and analyze large chemical data as well as will promote technology transfer from academy to industrial applications.

Marie Skłodowska-Curie Innovative Training Network European Industrial Doctorate (2016-2019)

BIGCHEM project publications http://bigchem.eu

	BIGCHEM publications			Cited by			
	Horizon2020 Marie Skłodowska-Curie Innovative Training Network Euro Doctorate	ppean Industrial			All	Since	2015
	Verified email at bigchem.eu big data chemoinformatics cheminformatics			Citations h-index i10-index	1754 16 24		1751 16 24
TITLE		CITED BY	YEAR			н.	840
The rise of deep le H Chen, O Engkvist, Y Drug discovery today 2	earning in drug discovery Wang, M Olivecrona, T Blaschke 23 (6), 1241-1250	463	2018		1	d.	630 420
Molecular de-novo M Olivecrona, T Blasci Journal of cheminform	Design through deep reinforcement learning hke, O Engkvist, H Chen atics 9 (1), 48	293	2017				210
Automating drug d G Schneider Nature Reviews Drug I	l iscovery Discovery 17 (2), 97	212	2018		2017 2018 207	19 2020	0
Application of Gen T Blaschke, M Olivecro Molecular informatics	erative Autoencoder in <i>De Novo</i> Molecular Design ona, O Engkvist, J Bajorath, H Chen 37 (1-2), 1700123	153	2018	Co-authors	kvist	VIEW	ALL
BIGCHEM: challer IV Tetko, O Engkvist, U Molecular informatics 3	nges and opportunities for big data analysis in chemistry J Koch, JL Reymond, H Chen 35 (11-12), 615-621	67	2016	Hongmin Astrazer	neca R&D Gotnenb ng Chen neca R&D Mölndal	urg O	>
On the integration E March-Vila, L Pinzi, I	of in silico drug design methods for drug repurposing N Sturm, A Tinivella, O Engkvist, H Chen, G Rastelli	64	2017	Jürgen E Professo	Bajorath or of Life Science In	form	>
Frontiers in pharmacol	ogy 8, 298	45	2019	Thomas Phd stud	Blaschke lent, AstraZeneca/l	Jnive	>
J Arús-Pous, T Blasch Journal of cheminform	ke, S Ulander, JL Reymond, H Chen, O Engkvist atics 11 (1), 1-14	40	2013	Jean-Lo Universi	uis Reymond ty of Bern		>
Randomized SMIL J Arús-Pous, SV Johar Journal of cheminform	ES strings improve the quality of molecular generative models nsson, O Prykhodko, EJ Bjerrum, C Tyrchan, atics 11 (1). 1-13	40	2019	Igor V. T Group L	etko eader at Helmholtz	Zentr	>

Up to now ~ 70 articles, including four highly cited (<1%) and one hot (<0.1%) article according to the Web of Science

About

The dramatic increase in using of Artificial Intelligence (AI) and machine learning methods in different fields of science becomes an essential asset in the development of the chemical industry, including pharmaceutical, agro biotech, and other chemical companies. However, the application of AI in these fields is not straightforward and requires excellent knowledge of chemistry. Thus, there is a strong need to train and prepare a new generation of scientists who have skills both in machine learning and in chemistry and can advance medicinal chemistry, which is the prime goal of the AIDD proposal. Research WPs include sixteen topics selected to cover the key innovative directions in machine learning in chemistry. Fellows employed will be supervised by academics who have excellent complementary expertise and contributed some of the fundamental AI algorithms which are used billions of times per day in the world, and leading EU Pharma companies who are in charge of new medicine and public health. All developed methods can be used individually but will also contribute to an integrated "One Chemistry" model that can predict outcomes ranging from different properties to molecule generation and synthesis. Training on various modalities allows the model to understand how to intertwine chemistry and biology to develop a new drug making its design robust and explainable. All partners agreed to make their software open source. It will boost the field and will provide the broadest possible dissemination of the results both to the academy and industry, including SMEs. The network will offer comprehensive, structured training through a well-elaborated Curriculum, online courses, and six Schools. The IP policy and commercial exploitation of the project results have the highest priority supported by intellectual property asset management organizations. Comprehensive public engagement activities will complement the dissemination of results to the scientific community.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956832.

The project will start on January 1st, 2021

http://ai-dd.eu fellowship applications will be announced soon

Data storage and model development: http://ochem.eu

big chem

Some OCHEM statistics

- **Physico-chemical properties:** logP, water solubility, melting point, pyrolysis (decomposition), solubility in DMSO
- **Biological activity:** estrogen receptors binding; endocrine disruptors; anti-HIV activity; AMES mutagenicity
- Environmental endpoints: ready biodegradability; fish toxicity; toxicity against T. Pyriformis, daphnia, etc.
- More than >100 (>500) models were published
- >7000 registered users
- >36 millions tasks were executed since launch
- >3M data points for >500 properties from > 10,000 articles
- Several groups develop and regularly publish new models
- Top-performing models in challenges (NIH, EPA ToxCast)

275k Melting Point Datasets (Big Data)

COMBINED: OCHEM + Enamine + Bradley + Bergström

Tetko et al J. Chemoinformatics, 2016, 8, 2.

Modeling of MP data

Package name	Type of descriptors	Number of descriptors	Matrix size, billions	Non zero values, millions	Sparseness	
Functional Groups	integer	595	0.18	3.1	33	
QNPR	integer	1502	0.45	6.3	49	
MolPrint	binary	688634	205	8.1	7200	
Estate count	float	631	0.19	10	14	
Inductive	float	54	0.02	11	1	
ECFP4	binary	1024	0.31	12	25	
Isida	integer	5886	1.75	18	37	
ChemAxon	float	498	0.15	23	1.5	
GSFrag	integer	1138	0.34	24	5.7	
CDK	float	239	0.07	27	2	
Adriana	float	200	0.06	32	1.3	
Mera, Mersy	float	571	0.17	61	1.1	
Dragon	float	1647	0.49	183	1.5	cł

Prediction errors for a set of drugs using models developed with different training sets

Prediction of Huuskonen set using ALOGPS logP and MP based on 230k measurements

logS = 0.5 - 0.01(MP-25) - log Kow

Predicted property: Aqueous Solubility modeled in log(mol/L) Training method: MLRA

Data Set	#	R2 q2		RMSE	MAE
• Training set: logS set	1311 records	0.842 ± 0.009	0.83 ± 0.01	0.84 ± 0.02	0.64 ± 0.02

"model in model"

Adapted from: Pan, S.J.; Yang, Q. A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering* **2010**, *22*, 1345-1359.

Multi-task learning

Multi-task learning

Problem:

- prediction of tissue-air partition coefficients
- small datasets 30-100 molecules (human & rat data)

Results:

simultaneous prediction of several properties increased the accuracy of models

Prediction of toxicity of chemical compounds: REGISTRY OF TOXIC EFFECTS OF CHEMICAL SUBSTANCES (RTECS®)

Different species

- Rat
- Mouse
- Rabbit
- ...
- Human
 - ~ 129k records ~ 87k compounds 29 properties

- Different toxicities
 - LD50
 - TDL
 - NOEL
 - LDLo
- Administartion
 - Oral
 - IPR (intraperitoneal)
 - IVR (intravenous)

Sosnin, S.; Karlov, D.; Tetko, I.V.; Fedorov, M.V. A comparative study of prediction of multi-target toxicity for a broad chemical space. *J Chem Inf Model.* **59**, 1062-1072.

RMSE for different toxicities using CDK descriptors and DNN

Sosnin, S. et al. A comparative study of prediction of multi-target toxicity for a broad chemical space. *J Chem Inf Model.* 2019, **59**, 1062-1072.

Comparison of different models to predict toxicity (RMSE)

	single	multi	single
s RMSE - Root Mean Square Error ᅌ	for Training set ᅌ Valida	tion: Cross-Validation (63 models)	\$
	DNN	DNN(2)	XGBOOST
CDK2 (constitutional, topological, geometrical, electronic,	0.9 0.56 1.33 0.474 0.56 1.1 0.478 0.477 0.66 1.05 0.623 0.78 0.68 0.7 0.63 0.99 0.724 1.41 0.63 0.86 1.1 0.85 1.31 0.72 0.85 1.01 0.8 0.66 1.27 (0.834)	0.76 0.47 1.22 0.472 0.51 0.93 0.471 0.459 0.54 0.96 0.576 0.68 0.59 0.591 0.47 0.91 0.577 1.25 0.581 0.66 1.02 0.69 1.21 0.65 0.66 0.76 0.63 0.58 1.14 (0.725)	0.8 0.47 1.29 0.454 0.5 1.02 0.439 0.56 1.04 0.584 0.75 0.65 0.59 0.95 0.66 1.33 0. 0.75 1.08 0.764 1.3 0.67 0.81 0.76 0.63 1.2 (0.779)
Dragon6 (blocks: 1-29)	0.89 0.58 1.3 0.458 0.56 1.06 0.481 0.472 0.6 1.06 0.63 0.74 0.66 0.686 0.63 0.97 0.69 1.32 0.622 0.82 1.09 0.83 1.33 0.76 0.83 0.98 0.8 0.7 1.24 (0.82)0.78 0.44 1.31 0.445 0.474 0.96 0.461 0.446 0.52 1 0.555 0.68 0.55 0.581 0.47 0.95 0.57 1.31 0.574 0.65 1.08 0.68 1.2 0.68 0.67 0.74 0.64 0.59 1.22 (0.732)		0.8 0.49 1.3 0.454 0.523 1.01 0.439 0.59 1.02 0.588 0.73 0 0.66 0.602 0.94 0.67 1.33 0 0.76 1.09 0.77 1.38 0.68 0.82 0.74 0.63 1.24 (0.786)
ALogPS, OEstate	0.91 0.61 1.32 0.461 0.54 1.1 0.478 0.469 0.6 1.1 0.617 0.75 0.7 0.652 0.64 1 0.69 1.36 0.617 0.84 1.11 0.87 1.43 0.76 0.85 0.95 0.8 0.71 1.2 (0.832)	0.79 0.44 1.23 0.447 0.49 0.94 0.467 0.444 0.53 0.99 0.554 0.66 0.55 0.59 0.49 0.9 0.58 1.21 0.571 0.65 1.05 0.69 1.22 0.65 0.7 0.74 0.64 0.6 1.17 (0.724)	0.84 0.5 1.42 0.456 0.519 1 (0.44 0.56 1.03 0.58 0.73 0. 0.65 0.61 0.95 0.64 1.34 0.59 1.11 0.79 1.33 0.69 0.8 0.81 0.63 1.21 (0.786)
Fragmentor (Length 2 - 4)	0.96 0.61 1.43 0.463 0.542 1.14 0.491 0.484 0.62 1.1 0.647 0.81 0.71 0.71 0.64 1.04 0.74 1.38 0.643 0.79 1.14 0.86 1.33 0.82 0.86 0.94 0.84 0.66 1.22 (0.849)	0.73 0.45 1.25 0.44 0.48 0.95 0.465 0.448 0.502 0.99 0.554 0.65 0.55 0.56 0.46 0.92 0.575 1.28 0.564 0.63 1.07 0.69 1.24 0.7 0.66 0.73 0.63 0.62 1.2 (0.724)	0.78 0.45 1.38 0.447 0.52 1 0.476 0.436 0.58 1.09 0.592 0.61 0.67 0.59 0.94 0.67 1.3 0.77 1.14 0.79 1.43 0.69 0.83 0.77 0.64 1.29 (0.797)

Sosnin, S. et al. A comparative study of prediction of multi-target toxicity for a broad chemical space. *J Chem Inf Model*. 2019, **59**, 1062-1072.

Comparison of MTL and STL

Multiple models overview

Predicted property: Cblood/Cair(Human) Training set: tissue/air set

	Metrics RMSE - Root Mean	Square Error ᅌ for	Training set	😒 Vali	dation: Cross-Validat	ion (16 model	s) ᅌ
		ASNN	MTL	DNN	ASNN(2)	STL	DNN(2)
	CDK2 (constitutional, topological, geometrical, electronic,	0.45 0.28 0.21 0.29 0.39 0.33 0.28 0.32 0.4 0.33 0.4 (0.335)	0.54 0.33 0.45 0.3 0.49 0	0.38 0.35 0.4 21 0.43 0.44 .52 (0.423)	0.41 0.41 0.45 0.42 0. 0.56 0.279 0.5 0.39 0. 0.44 (0.424)	44 0.549 37 0.71 0.6 0.44	0.45 0.54 0.48 66 0.35 0.6 0.46 0.71 (0.541)
	OEstate	0.44 0.35 0.31 0.33 0.4 0.44 0.32 0.33 0.33 0.31 0.36 (0.356	0.42 0.3 0.38 0.4 0.41 0.3	29 0.31 0.32 41 0.31 0.33 7 0.4 (0.359)	0.41 0.47 0.44 0.51 0. 0.6 0.37 0.57 0.5 0.3 0.48 (0.491)	66 0.44 0.3 9 0.46 0 0.41	35 0.46 0.41 0.4).38 0.48 0.47 0.57 (0.439)
	DAG	GRAPH_	CONV	Т	EXTCNN	W	EAVE
M T L	0.75 0.55 0.6 0.35 0.94 0.67 0.44 0.64 0.58 0.57 0.92 (0.637)	0.93 0.64 0.8 0 0.79 0.85 0.89	.58 1 1 0.6 0.8 (0.807)	0.53 0.4 0.53 0.3 0	4 0.43 0.33 0.48 5 0.53 0.47 0.48 .5 (0.457)	0.7 0.69 0.64 0.4 0.61 0	0.8 0.61 0.9 1 0.74 0.57).7 (0.67)
S T L	0.63 0.52 0.9 0.47 1.1 1 0.38 0.8 0.62 0.62 1 (0.731)	.8 0.61 0.9 0.7 0.9 0.8 0.86 0.92 0.9	0.78 0.65 (0.802)	0.58 0.54 0.63 0.39 0.48	0.57 0.51 0.7 0.66 0.51 0.62 8 (0.563)	0.62 0.52 1.1 0.48 0 0.8 (0.7 0.59 0.8 .71 0.72 0.72 (0.705)

Support of mixtures

Basket 📩 💼 Record 1 - 5 of 465	s 🖋 🗸 🚀 📩 🚣 📑 🖉 🚋 🗑 Tags 🚫 🚫 5 📀 items on page 1 of 93 >	>>
	Azeo = non azeotrope	MIXTURES = CIC(CI)CI;0.5 C1CCCCC1;0.5
	Horsley, L. Table of Azeotropes and Nonazeotropes N: AUTO_400 Anal. Chem. 1947 ; 19 (8) 508 - 600 Chloroform ; CYCLOHEXANE MoleculeID: M96691339	RecordID: <i>R32620625</i>
molecule profile	Public and freely downloadable record (awaiting approval)	xenol 🖂
HO	 Azeo = non azeotrope Horsley, L. Table of Azeotropes and Nonazeotropes 	MIXTURES = CCCCO;0.5 BrC1=CC=CC=C1;0.5
сн, CH, molecule profile	N: AUTO_399 Anal. Chem. 1947 ; 19 (8) 508 - 600 butanol ; BROMOBENZENE MoleculeID: <i>M96691338</i> Public and freely downloadable record (awaiting approval)	RecordID: <i>R32620624</i> 11:08, 2 Jul 18 xenol 🖂
	Azeo = non azeotrope	MIXTURES = COC(C)=0;0.5 CC(=0)OC=C;0.5
н _з с, н _з с≕о-Қ	Horsley, L. Table of Azeotropes and Nonazeotropes N: AUTO_398 Anal. Chem. 1947 ; 19 (8) 508 - 600 methylacetate ; VINYLACETATE MoleculeID: <i>M96691337</i>	RecordID: <i>R32620623</i> 11:08, 2 Jul 18
molecule profile	Number 2018 Additional and the second (awaiting approval)	xenol 🖂
но	 Azeo = non azeotrope Horsley, L. Table of Azeotropes and Nonazeotropes 	MIXTURES = C1CCCC1;0.5 CC(C)CO;0.5
Molecule profile	N: AUTO_397 Anal. Chem. 1947 ; 19 (8) 508 - 600 Isobutanol ; CYCLOPENTANE MoleculeID: <i>M96691336</i> Public and freely downloadable record (awaiting approval)	RecordID: <i>R32620622</i> 11:08, 2 Jul 18 xenol ⊠

Mixtures' descriptors

Acknowledgements

Pavel Karpov Dipan Ghosh Michael Withnall Zhonghua Xia Barbara Gasset

Sergey Sosnin (Skoltech) Maxim Fedorov (Skoltech)

Yura Sushko Sergey Novotarskyi Robert Körner

M. Sattler (HMGU)

